We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Blood Test Helps Identify CV Patients Most at Risk

By LabMedica International staff writers
Posted on 19 Feb 2018
Print article
Image: The Multiskan FC microplate photometer (Photo courtesy of Thermo Fisher Scientific).
Image: The Multiskan FC microplate photometer (Photo courtesy of Thermo Fisher Scientific).
A new blood test could provide a clue as to why some patients are at higher risk of cardiovascular disease risk after suffering a heart attack, which may help scientists to identify new targets for reducing the risk and eventually lead to more effective treatments.

Adverse events, including cardiovascular (CV) death, remain common following acute coronary syndrome (ACS). Intensive antithrombotic therapies, including potent P2Y12 inhibitors and the addition of low-dose anticoagulant therapy, have all resulted in improved outcomes but increased the risk of major bleeding events.

An international team of scientists collaborating with their colleagues at the University of Sheffield (Sheffield, UK) obtained blood samples from a sub-set of 4,354 patients with acute coronary syndrome as they were discharged from hospital. High-throughput turbidimetric analysis was performed in flat-bottomed, polystyrene 96-well plates using a dedicated Multiskan FC plate reader.

Studied variables included lysis time which is time taken for turbidity to drop by 50% from maximum as a measure of lysis potential and maximum turbidity which is turbidity the scattering of light as a measure of fibrin clot density. Other biochemical analyses included N-terminal pro B-type natriuretic peptide (NT-proBNP), high-sensitivity troponin T, cystatin C, C-reactive protein (CRP), and growth differentiation factor-15 (GDF-15), which were measured using sandwich immunoassays. Differential blood count was determined on EDTA-anticoagulated blood samples at randomization.

The scientists reported that after adjusting for CV risk factors, each 50% increase in lysis time was associated with CV death/spontaneous myocardial infarction (MI) and CV death alone. Similarly, each 50% increase in maximum turbidity was associated with increased risk of CV death. After adjustment for other prognostic biomarkers (leukocyte count, high-sensitivity C-reactive protein, high-sensitivity troponin T, cystatin C, N-terminal pro B-type natriuretic peptide, and growth differentiation factor-15), the association with CV death remained significant for lysis time, but not for maximum turbidity.

The authors concluded that after adjustment for known clinical characteristics and risk factors, the study found that the patients with the longest clot lysis time had a 40% increased risk of recurrent myocardial infarction or death due to cardiovascular disease. Fibrin clots that are resistant to lysis independently predict adverse outcome in ACS patients. The study was published on January 29, 2018, in the European Heart Journal.

Related Links:
University of Sheffield

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.