We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Markers Revealed for Severe Multiple Sclerosis

By LabMedica International staff writers
Posted on 03 Oct 2017
Print article
Image: The Accuri C6 Plus flow cytometer (Photo courtesy of BD Biosciences).
Image: The Accuri C6 Plus flow cytometer (Photo courtesy of BD Biosciences).
Multiple Sclerosis (MS) is a chronic condition that affects an estimated 2.3 million people worldwide. In MS, the sheath covering nerve fibers in the brain and spinal cord becomes damaged, slowing or blocking electrical signals from the brain reaching the eyes, muscles, and other parts of the body.

Two closely related cytokines, molecules involved in cell communication and movement, have been discovered that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease and this may help in developing a novel treatment to prevent progressive forms of the disease.

A large group of scientists working with those at VA Portland Health Care System (Portland, OR, USA) recruited 117 participants all over the age of 18. One hundred seventy plasma and 474 DNA samples of MS subjects were also received. Participants included subjects with clinically definite or laboratory-supported MS diagnosis according as well as subjects with clinically isolated syndrome (CIS) and 49 health controls (HC) were also enrolled Over 90% of the study participants were of European ancestry.

Plasma macrophage migration inhibitory factor (MIF) concentration was measured by the human MIF Quantikine enzyme-linked immunosorbent assay (ELISA) kit and its related protein, D-dopachrome tautomerase (D-DT) was also measured by an ELISA. The investigators performed real-time polymerase chains reactions (RT-PCR), histology, genotyping, cell surface CD74 measurements, which were analyzed on an Accuri C6 flow cytometer. The scientists used several other technologies to obtain their results.

The team identified the cytokine, MIF, along with its related protein, D-DT, which are associated with progressive MS. These cytokines worsen the disease by increasing inflammation within the central nervous system. They also linked enhanced expression of MIF with a gene variant that occurred more frequently in MS patients with progressive disease particularly in men.

These findings suggest that a simple genetic test could be used to identify MS patients at risk of developing the more severe form of the disease. As medications to halt the disease are under development, the scientists say that such a therapy could be used as part of a precision medicine approach that would be most effective in patients who have the MIF genetic susceptibility.

Richard Bucala, MD, a professor of medicine and co-senior author of the study, said, “The value of this discovery to patients is that there are now approved therapies, as well as new ones in development in the Oregon and Yale labs, which target the MIF pathway and could be directed toward progressive MS. Using a simple genetic test to select patients who might benefit the most from MIF blockers would accelerate drug development by reducing cost, decreasing risks of toxic effects, and providing a genetically tailored, effective treatment.” The study was published on September 18, 2017, in the journal Proceedings of the National Academy of Sciences.

Related Links:
VA Portland Health Care System


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.