Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Genetic Cause Deciphered for Inherited Nerve Damage Afflicting Older Adults

By LabMedica International staff writers
Posted on 05 Oct 2016
An international team of researchers has identified a gene, MME, with a causative link to late-onset autosomal dominant axonal polyneuropathies. Patients initially develop loss of sensation and pain, then the illness can advance rapidly and lead to paralysis, inability to walk, and wheelchair dependency.

Rare loss-of-function mutations in the MME gene, encoding the metalloprotease neprilysin, underlying the disease were discovered by an international team under the guidance of researchers at Medical University Vienna (MedUni Vienna; Vienna, Austria) and University of Munich (Munich, Germany).

"The gene mutation leads to an enzyme deficiency which probably triggers nerve damage. In future, the balance of the reduced enzyme activity could represent a novel therapy approach," said lead author and study manager Michaela Auer-Grumbach, MedUni Vienna. Polyneuropathy occurs in 2-3% of the population and in 7% of those over age 65. The cause is still unclear in up to 50% of affected people and a causal therapy is not yet available for this group of patients.

The origin of this discovery was 3 unrelated Austrian families where several members between ages 55-80 initially noticed a loss of sensation and discomfort in the toes, which spread to the knees within just a few months. This was often accompanied by pain as well as a relatively quickly advancing muscle weakness when lifting toes and feet. "After a few years, walking freely was often no longer possible," said M. Auer-Grumbach.

Despite extensive research, initially the cause could not be clarified. "Due to the rapid deterioration of the symptoms, some patients were initially treated with unsuitable medication, which showed no improvement, but often caused considerable side-effects. Based on the poor response to anti-inflammatory medication, but also due to the familial accumulation of polyneuropathy, we ultimately assumed a genetic cause, even though the late start of the disease seemed rather atypical for inherited polyneuropathy,” explained M. Auer-Grumbach.

“An analysis of the entire exome of the patients [i.e. the protein-encoding genes] resulted in a serious genetic deviation in the MME gene, which is responsible for the formation of the neprilysin enzyme,” she added.

Together with Jan Senderek, University Munich, who was aware of similar patients in Germany, the MME gene was examined in other patients, and following additional collaborations with European and American work groups mutations could be identified in 28 patients from 19 families. Further confirmation was then provided by results of measurements of neprilysin in the blood and fatty tissue, which was significantly lower than in control persons. A study from Japan, that also describes severe polyneuropathy at a complete lack of neprilysin, confirmed the Vienna and Munich study results.

"Discovery of the cause of this disease allows the specific genetic diagnostic and consultancy of afflicted patients and their families and shall avoid ineffective therapies, which are stressful due to undesirable side-effects", said M. Auer-Grumbach, "If further studies confirm that the deficiency of neprilysin leads to the formation of polyneuropathy, there is justified hope that an effective therapy can be developed in the near future, either by enzyme replacement or with active ingredients, which are already known for raising the neprilysin level.”

The researchers are planning further epidemiological examinations of patients with unclear polyneuropathy to discover whether mutations in MME are also of significance in the sporadic (not family-cumulative) appearance of polyneuropathy.

The study, by Auer-Grumbach M et al, was published September 1, 2016, in the American Journal of Human Genetics.

Related Links:
Medical University Vienna
University of Munich

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.