We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Prostate Cancer Detected in Blood Using Flow Cytometry

By LabMedica International staff writers
Posted on 22 Feb 2016
Print article
Image: The Apogee Flow Cytometer used for detecting microparticles of prostate cancer (Photo courtesy of Schulich School of Medicine and Dentistry).
Image: The Apogee Flow Cytometer used for detecting microparticles of prostate cancer (Photo courtesy of Schulich School of Medicine and Dentistry).
Current methods of detecting prostate cancer, such as the prostate-specific antigen (PSA) test and biopsies, have limitations. PSA tests are based on measuring a specific protein released by the prostate gland, but do not provide a definitive diagnosis.

A physical exam and biopsy are needed if PSA levels are elevated; however, even the painful biopsy procedure has a 15% error rate. During biopsies, a painful and invasive procedure, 12 needles are inserted into the rectum, with the hope of extracting material from an area with a tumor.

A team of scientists at the Western University's Schulich School of Medicine and Dentistry (London, ON, Canada) and at Lawson Health Research Institute (London, ON, Canada) have repurposed a machine once used to detect airborne pathogens in the second Gulf War. The machine is now used for fluid biopsies, a noninvasive way to detect prostate microparticles in the blood in a matter of minutes. Microparticles are essentially refuse released by prostate cells that circulate throughout the bloodstream.

The machine was used in the Gulf War, and more commonly to test water purity and the machine uses flow cytometry (Apogee Flow Systems; Hemel Hempstead, UK) to detect microparticles. Flow cytometry measures the specific characteristics of a fluid, such as blood, as it passes through a laser. Most men, who are more than 40 years old, regardless of their health, have detectable levels of prostate microparticles in their bloodstream. The scientists have conducted the first clinical cancer project to correlate the number of microparticles in the blood to the risk of having prostate cancer in that the more microparticles, the higher the risk.

The study provides a more accurate and less invasive testing method for patients suspected of having prostate cancer, and helps to identify patients who are at a higher risk of dying from prostate cancer. Hon Leong, PhD, an assistant professor and team leader, said, “Our findings point to a new direction in how we can better identify patients who actually have prostate cancer. With this test, we can improve the clinical outcomes for patients, reducing costs for unnecessary procedures and reducing errors in diagnosis.”

Related Links:

Western University's Schulich School of Medicine and Dentistry
Lawson Health Research Institute
Apogee Flow Systems


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.