We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Method Designed to Screen Cancer Cells

By LabMedica International staff writers
Posted on 15 Dec 2015
Print article
Image: Schematic illustration of the components of the parallel microfiltration system (Photo courtesy of University of California).
Image: Schematic illustration of the components of the parallel microfiltration system (Photo courtesy of University of California).
A screening method has been developed that utilizes viscoelastic characteristics to classify many more different types of cancer cells and that could ultimately lead to better treatments for a variety of other diseases.

The method called parallel microfiltration may also have broader applications, including the ability to screen molecules that can alter particular genes and protein levels inside a cell, which could be useful in treating cancer, diabetes, malaria and other diseases.

Scientists at the University of California – Los Angeles (UCLA; CA, USA) placed a mixture of cells and liquid on a porous membrane, and applied air pressure to force the mixture down through tiny pores that have a smaller circumference than the cells. Stiffer cells block the pores so that not much liquid can filter through; for squishier cells, more of the cell-and-liquid mixture passes through. The scientists can use parallel microfiltration to test many different small molecules at once by measuring the filtration of fluid into individual compartments.

The team found that drug-resistant human ovarian cancer cells are softer than their drug-sensitive counterparts, and that more-invasive cancer cells are softer than less-invasive ones. In future studies, the investigators hope to establish whether squishier cancer cells are in fact more harmful than stiffer cancer cells, and whether their softness can be reversed.

Amy C. Rowat, PhD, the lead author of the study, said, “We want to screen cells based on their squishiness or stiffness. We created a technology to probe the deformability of hundreds of cell samples at the same time, so we can identify compounds that make the cells stiffer. Our hope is that we can identify new compounds that can help to prevent the spread of cancer.” The study was published on December 2, 2015, in the journal Scientific Reports.

Related Links:

University of California – Los Angeles 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.