Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Next-Generation Sequencing Technique Diagnoses Recurrent Hodgkin’s Lymphoma

By LabMedica International staff writers
Posted on 13 May 2015
A next-generation sequencing-based approach can identify and quantify populations of B cells and detect tumor-specific DNA sequences in the blood of people with classical Hodgkin's lymphoma (CHL).

The test developed will allow physicians to better assess how patients have responded to initial treatment and to detect disease recurrence by simple blood draw instead of radiographic imaging studies.

Scientists at The University of Texas MD Anderson Cancer Center (Houston, TX, USA) obtained both primary tissue and blood samples from 17 CHL cases, taken either at the time of diagnosis or at recurrence were selected for evaluation. DNA and RNA were extracted from frozen primary tumor biopsy samples and analyzed for clonality at the immunoglobulin heavy chain (IGH) and kappa chain (IGK) loci using the high-throughput sequencing technology LymphoSIGHT method (Sequenta, Inc.; South San Francisco, CA, USA).

Minimal residual disease (MRD) refers to cancer cells that may remain in the body of a person with lymphoid cancer after treatment. These cells are present at levels undetectable by traditional microscopic examination, also called morphologic examination, of blood, bone marrow or a lymph node biopsy. Sensitive molecular technologies, such as the next-generation sequencing utilized by the clonoSEQ MRD test (Adaptive Biotechnologies, Seattle WA, USA), are needed for reliable detection of very low levels of MRD.

With its ability to detect cancer cells at a level as low as one per one million white blood cells, the clonoSEQ MRD test is one to two orders of magnitude more sensitive than the other methods of MRD detection. Seventeen CHL cases were tested and lymphoma-specific sequences were identified in 12 of the primary tumor biopsies. Lymphoma-specific sequences were identified in the serum from eight of 11 cases. The lymphoma-specific sequence was more frequently detected in serum than in peripheral blood mononuclear cells (PBMC), suggesting that the circulating lymphoma cells may lyse easily in the blood, or, more likely, DNA may be released directly from the tumor into the circulation. ClonoSEQ is a recent addition to the Adaptive portfolio thanks to its acquisition of Sequenta in January. The combined company aims to create novel immunosequencing products to diagnose, treat, and monitor patients with cancer, autoimmune disorders and infectious diseases.

Tom Willis, PhD, Senior Vice President and General Manager, Diagnostics Products, Adaptive Biotechnologies, said, “The immunosequencing technology that was used in this study allows for ultrasensitive detection of lymphoma-specific DNA signatures. This technology is at the heart of our clonoSEQ process, which has so far been validated for the detection and quantification of minimal residual disease in myeloma and several types of leukemia and non-Hodgkin's lymphoma. This study shows that our technology also has the potential to impact the clinical care of patients with Hodgkin's lymphoma.” The study was published on March 29, 2015, in the British Journal of Haematology.

Related Links:

The University of Texas MD Anderson Cancer Center
Sequenta Inc.
Adaptive Biotechnologies 



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.