We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Novel NanoVelcro Chip Isolates Intact Circulating Tumor Cells for Diagnostic Testing

By LabMedica International staff writers
Posted on 27 Jan 2015
Print article
Image: A nanoscale Velcro-like device captures and releases tumor cells that have broken away from primary tumors and are circulating in the bloodstream. This new nanotechnology could be used for cancer diagnosis and to give insight into the mechanisms of how cancer spreads throughout the body (Photo courtesy of the RIKEN Advanced Science Institute).
Image: A nanoscale Velcro-like device captures and releases tumor cells that have broken away from primary tumors and are circulating in the bloodstream. This new nanotechnology could be used for cancer diagnosis and to give insight into the mechanisms of how cancer spreads throughout the body (Photo courtesy of the RIKEN Advanced Science Institute).
An international team of bioengineers has developed a novel "nanoVelcro" device that removes circulating tumor cells (CTCs) from the blood without damaging them.

Samples of CTCs are regarded as the “liquid biopsy” of a tumor, providing convenient access to all disease sites, including primary tumor and fatal metastases. A method that preserves the integrity of CTCs allows molecular and functional analyses that can guide proper therapeutic intervention.

Investigators at the University of California, Los Angeles (USA) and colleagues at RIKEN Advanced Science Institute (Japan) recently described a novel "nanoVelcro" chip that selectively removes CTCs from the blood. The NanoVelcro Chip is about the size of a postage stamp and is composed of nanowires coated with antibodies that recognize CTCs. When two milliliters of blood are passed through the chip, the tumor cells adhere to the nanowires like Velcro. Efficiency of CTC binding ranges from 40% to 70%. The cancer cells are retained by tiny temperature-responsive polymer brushes inside the device. At 37 degrees Celsius, these polymer brushes stick to the tumor cells, but when cooled to four degrees Celsius, they release them, allowing analysis of the cells.

The investigators were able to successfully demonstrate culture expansion and mutational analysis of CTCs isolated by this purification system. In addition, they adopted the combined use of the Thermoresponsive NanoVelcro system with downstream mutational analysis to monitor the disease evolution of an index non-small-cell lung cancer (NSCLC) patient, highlighting its translational value in managing NSCLC.

“With our new system, we can control the blood’s temperature—the way coffeehouses would with an espresso machine—to capture and then release the cancer cells in great purity,” said senior author Dr. Hsian-Rong Tseng, professor of molecular and medical pharmacology at the University of California, Los Angeles. “We combined the thermoresponsive system with downstream mutational analysis to successfully monitor the disease evolution of a lung cancer patient. This shows the translational value of our device in managing non-small-cell lung cancer with underlying mutations.”

A detailed description of the NanoVelcro Chip was published in the December 13, 2014, online edition of the journal ACS Nano.

Related Links:

University of California, Los Angeles
RIKEN Advanced Science Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.