We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New COVID-19 Rapid-Test Technology Delivers Faster RT-PCR Results

By LabMedica International staff writers
Posted on 02 Aug 2022
Print article
Image: Infrared heating of plasmonic nanoparticles facilitates multiplexed RT-qPCR for rapid detection of SARS-CoV-2 (Photo courtesy of Columbia Engineering)
Image: Infrared heating of plasmonic nanoparticles facilitates multiplexed RT-qPCR for rapid detection of SARS-CoV-2 (Photo courtesy of Columbia Engineering)

For more than 30 years, polymerase chain reaction (PCR) has been the gold standard in molecular diagnostic testing, detecting genetic material, such as those from a virus or from human DNA. But PCR, including reverse transcription polymerase chain reaction (RT-PCR), is mostly done at large, centralized laboratories, not in point-of-care (POC) settings, because its instrumentation is bulky, expensive, takes a long time for results, and requires trained technicians to run it. These limitations have led to a shortage of accurate POC diagnostics as well as bottlenecks in test results, particularly during the COVID-19 pandemic. Now, researchers have built an RT-PCR platform which gives results in 23 minutes that match the longer laboratory-based tests - faster than other PCR tests on the market.

The new Rover PCR system developed by researchers at Columbia Engineering (New York, NY, USA) and Rover Diagnostics (New York, NY, USA) can be adapted to test for a broad range of infectious diseases including not just COVID-19 but also flu, strep, and other viruses that require fast diagnosis. Its targeted sensitivity is higher than other types of tests such as isothermal, antigen, and CRISPR. And, at just two pounds, the Rover PCR is easy to carry around and can be used by anyone. The platform uses sample preparation techniques, combined with a new approach to thermal cycling, bypassing the standard approach of Peltier device - which heats the sample from outside the vial. Instead, Rover’s system uses a photothermal process - plasmonic thermocycling - that relies on nanoparticles irradiated by light to rapidly generate heat from inside.

The team successfully performed reverse-transcriptase quantitative PCR (RT-qPCR) in a reaction vessel containing all the PCR reagents. qPCR is the current gold-standard laboratory technique for identifying COVID infection. The technique provides quantification of infectious units, but it also poses a number of hurdles for point-of-care (POC) miniaturization. In the study, the researchers addressed these challenges by leveraging plasmonic nanoparticles - discrete metallic particles that respond to infrared light by releasing heat - to achieve real-time and multiplexed RT-qPCR on clinical specimens. The Rover team is now moving forward with a commercial product that can detect COVID-19, its variants, and other infectious diseases.

“This should really move the needle on delivering rapid and accurate molecular clinical diagnostics in decentralized settings,” said Mark Fasciano, Rover’s CEO. “Thermal cycling, so critical to DNA and RNA testing, can now be sped up and clinicians and patients alike won’t have to wait so long for results.”

Related Links:
Columbia Engineering 
Rover Diagnostics 

Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Benchtop Cooler
PCR-Cooler & PCR-Rack
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.