Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Hybrid Protein Developed as Tools for Gene Cutting, Editing

By LabMedica International staff writers
Posted on 23 Sep 2010
A U.S. More...
team of researchers has developed a kind of hybrid proteins that can make double-strand DNA breaks at specific sites in living cells, potentially leading to better gene replacement and gene editing therapies.

Dr. Bing Yang, assistant professor of genetics, development and cell biology at Iowa State University (ISU; Ames, USA;), and his colleagues developed the hybrid protein by joining parts of two different bacterial proteins. One is called a TAL (transcription activator-like) effector, which functions to find the specific site on the gene that needs to be cut, and the other is an enzyme called a nuclease that cuts the DNA strands. Dr. Yang hopes this study will lead to the ability to engineer genomes by cutting out defective or undesirable parts of DNA, or by replacing defective or undesirable gene segments with a functioning piece of replacement DNA--a process called homologous recombination.

Dr. Yang reported that these hybrid proteins could be constructed to locate specific segments of the DNA in any sort of organism. "This breakthrough could eventually make it possible to efficiently modify plant, animal and even human genomes,” said Dr. Yang. "It should be effective in a range of organisms.”

The proteins function by binding onto the specific segment of DNA the researcher needs to change. These proteins do this by reading the DNA sequence and finding the specific area to be cut. Once the protein binds onto the DNA at the correct spot, the other half of the protein then cuts the double-stranded DNA. Bad or undesirable DNA can be resected and good or more desirable DNA can be introduced. When the DNA heals, the good DNA is included in the gene.

Dr. Yang began his project approximately one year ago after seeing the results of research by Dr. Adam Bogdanove, ISU associate professor of plant pathology, showing that TAL effectors use a very clear-cut code to bind to a specific DNA sequence. This discovery allowed Dr. Yang to predict precisely where the TAL effector nuclease will bind on the DNA to make the cut. Another study had similar results.

The conecept has also been validated by Dr. Bogdanove and Dr. Dan Voytas, collaborator in genetics, development, and cell biology at Iowa State, and director of the Center for Genome Engineering at the University of Minnesota (Twin Cities, USA). The TAL effector-nuclease approach improves on tools currently available for genome modification. It should be faster and less expensive to make TAL effector nucleases, and simpler to design them to recognize specific DNA sequences, according to Dr. Yang.

Yang's findings appeared in August 2010 in the online version of the journal Nucleic Acids Research. Dr. Voytas' and Bogdanove's study also appeared in August 2010 the journal Genetics. Dr. Voytas and Dr. Bogdanove were also able to demonstrate that the TAL effector part of the hybrid protein can be modified to target new DNA sequences.

Related Links:

Iowa State University



New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.