We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

By LabMedica International staff writers
Posted on 22 Mar 2015
Print article
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).
Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening.

Drug discovery and development have long been hampered by high failure rates attributed to the reliance on non-human animal models employed during safety and efficacy testing. A fundamental problem in this inefficient process is that non-human animal models cannot adequately represent human biology.

To circumvent the physiological differences inherent in animal model systems, investigators at the University of California, Berkeley (USA) developed a human tissue-based model system using heart cells derived from selectively manipulated human pluripotent stem cells. The cells were induced to grow in a silicon chip device that contained a three-dimensional culture scaffold that was comparable to the geometry and spacing of connective tissue fiber in a human heart. Heart cells were loaded into the chip in multiple layers aligned in a single direction. Microfluidic channels on either side of the growth area served as models for blood vessels, mimicking the exchange by diffusion of nutrients and drugs with human tissue.

Results published in the March 9, 2015, edition of the journal Scientific Reports revealed that within 24 hours after the heart cells were loaded onto the chip, they began beating on their own at a normal physiological rate of 55 to 80 beats per minute. The culture system was able to keep human induced pluripotent stem cell derived cardiac tissue viable and functional over a period of several weeks.

The system was tested by monitoring the reaction of the heart cells to four different cardiovascular drugs: isoproterenol, E-4031, verapamil, and metoprolol. Changes in the heart tissue’s beat rate were monitored to gauge the response to the compounds. The experiment was considered to be a success when—after half an hour of exposure to isoproterenol, a drug used to treat bradycardia—the heart tissue beat rate increased from 55 to 124 beats per minute.

The "heart-on-a-chip" project was sponsored in part by the [US] National Institutes of Health's Tissue Chip for Drug Screening Initiative, an interagency collaboration for the development of three-dimensional human tissue chips that model the structure and function of human organs.

“Ultimately, these chips could replace the use of animals to screen drugs for safety and efficacy,” said senior author Dr. Kevin E. Healy, professor of bioengineering at the University of California, Berkeley. “Using a well-designed model of a human organ could significantly cut the cost and time of bringing a new drug to market.”

Related Links:
University of California, Berkeley


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.