We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Approach Brings Personalized Melanoma Treatment Closer to Reality

By LabMedica International staff writers
Posted on 27 Sep 2018
A team of melanoma researchers used a novel "HLA peptidomics" method to identify and isolate cancer-specific neo-antigens, which could be used to train immune system cells for targeting and destruction of the tumor.

The quest for tumor-associated-antigens (TAAs) and neo-antigens is a major focus of cancer immunotherapy. More...
Neo-antigens are those that are entirely absent from the normal human genome. They are of relevance to tumor control, as the quality of the T-cell pool that is available for these antigens is not affected by central T-cell tolerance.

In a paper published in the September 12, 2018, online edition of the journal Cancer Discovery, investigators at the Weizmann Institute of Science (Rehovot, Israel), Technion - Israel Institute of Technology (Haifa), and their collaborators combined a neo-antigen prediction-pipeline and human-leukocyte-antigen (HLA)-peptidomics to identify TAAs and neo-antigens in 16 tumors derived from seven melanoma patients, and characterize their interactions with their tumor-infiltrating lymphocytes (TILs).

The investigators used the peptidomics method to bypass previously described algorithmic methods. Instead, they employed a method that removed the peptides from the melanoma cells' HLA complex and investigated the interactions of these antigens with T-cells.

This methodology facilitated the discovery of remarkable antigenic and TIL similarities between metastases from the same patient. Furthermore, the investigators found that two neo-antigen-specific clonotypes killed 90% of autologous melanoma cells - both in vitro and in vivo - showing that a limited set of neo-antigen-specific T-cells may play a central role in melanoma tumor rejection.

First author Dr. Yardena Samuels, associate professor of molecular cell biology at the Weizmann Institute of Science, said, "We discovered that tumors present many fewer neo-antigens than we expected. Our neo-antigen and corresponding T-cell-identification strategies were so robust; our neo-antigen-specific T-cells killed 90% of their target melanoma cells both on plates and in mice. This suggests possible clinical applications for the near future. Some of the peptides we identified are neo-antigens that had not even shown up in the algorithm studies; in other words, the method we used, called HLA peptidomics, is really complementary to these methods."

Dr. Samuels said that, "Although this research is experimental right now, the findings are highly relevant to clinical research, as groups around the world have already worked out the basics of developing therapeutic anti-cancer treatments based on neo-antigens. As almost all the neo-antigens detected in patients thus far are individual -and unique to the particular cancerous tissue - they constitute an ideal class of anti-cancer targets. This would be the ultimate "personalized" cancer therapy - a new drug is created for every patient."

Related Links:
Weizmann Institute of Science
Technion - Israel Institute of Technology


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.