We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





Simple, Inexpensive, Fast and Accurate Nano-Sensors Pinpoint Infectious Diseases Like SARS CoV-2

By LabMedica International staff writers
Posted on 03 Feb 2022
Print article
Illustration
Illustration

A novel method uses simple, inexpensive, fast and accurate nano-sensors to pinpoint infectious diseases like Ebola virus (EBOV) and SARS CoV-2.

The technology, developed by researchers at Arizona State University (Tempe, AZ, USA) and the University of Washington Seattle (Seattle, WA, USA), represents a significant advance in the fight against infectious diseases. It can be developed and produced at very low cost, deployed within weeks or days after an outbreak, and made available for around one cent per test.

In recent years, deadly infectious diseases, including Ebola and COVID-19, have emerged to cause widespread human devastation. Although researchers have developed a range of sophisticated methods to detect such infections, existing diagnostics face many limitations. The new technique, known as Nano2RED, is a clever twist on conventional high-accuracy tests relying on complex testing protocols and expensive readout systems. The in-solution nano-sensors (“Nano2” in the name) serve to detect disease antigens in a sample by simple mixing. The innovative Rapid and Electronic Readout process (“RED”) developed by the researchers delivers test results, which are detectable as a color change in the sample solution, and record the data through inexpensive semiconductor elements such as LEDs and photodetectors.

Compared with widely used high-accuracy lab tests, such as ELISA, Nano2RED is much easier to use. It does not require surface incubation or washing, dye labeling, or amplification, yet still provides about 10 times better sensitivity than ELISA. In addition, the use of semiconductor devices supports a highly portable digital readout system, which can be developed and produced at a cost as low as a few dollars, making it ideal not only for lab use but for clinics, home use, and remote or resource-strained locations. This approach is based on modular designs, and could potentially be used to test for any pathogen.

As a proof of concept, the researchers conducted a study to apply their innovative method to test for two prominent diseases, Ebola virus (EBOV) and SARS CoV-2. The new technology can identify secreted glycoprotein (sGP), a telltale fingerprint of Ebola virus disease and the SARS-CoV-2 spike protein receptor binding domain (RBD). Similar to ELISA, Nano2RED also relies on binding affinity for positive diagnosis but instead uses floating gold nanoparticles for readout. Unlike ELISA, Nano2RED can be developed from scratch in roughly 10 days and theoretically applicable for any pathogen, providing vitally important early surveillance in the case of a disease outbreak. It can deliver test results in 15-20 minutes and may be administered at an estimated cost of a penny per test. In the current study, the new test was shown to detect Ebola’s sGP in serum with a sensitivity roughly 10 times better than ELISA.

“This technology works not because it is complex but because it is simple,” said Chao Wang, a researcher at Arizona State University’s Biodesign Institute and School of Electrical, Computer & Energy Engineering. “Another unique feature is the multidisciplinary nature of biosensing. A fundamental understanding of biochemistry, fluidics, and optoelectronics helped us come up with something this ‘simple’.”

Related Links:
Arizona State University 
University of Washington Seattle 

Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Unit-Dose Packaging solution
HLX
New
Vedolizumab ELISA
RIDASCREEN VDZ Monitoring
New
H.pylori DNA Extraction Kit
Savvygen Stool NA Extraction Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)

Simple Blood Draw Helps Diagnose Lung Cancer 10 Times Faster

Once dismissed as cellular waste, exosomes—tiny vesicles released by cells containing proteins, DNA, or RNA fragments—have emerged as vital players in cell-to-cell communication over the past decade.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.