Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





New Faster COVID-19 Test Avoids RNA Degradation and Time-Consuming Extraction

By LabMedica International staff writers
Posted on 17 Aug 2021
Scientists have developed a new sample preparation method to detect SARS-CoV-2 that bypasses extraction of the virus' genetic RNA material, thereby simplifying sample purification and potentially reducing test time and cost.

The team of scientists at the National Institutes of Health (NIH Bethesda, MA, USA) made their discovery by testing a variety of chemicals using synthetic and human samples to identify those that could preserve the RNA in samples with minimal degradation while allowing direct detection of the virus by using quantitative reverse transcription PCR (RT-qPCR). More...


Diagnostic testing remains a crucial tool in the fight against the COVID-19 pandemic. Standard tests for detection of SARS-CoV-2 involve amplifying viral RNA to detectable levels using RT-qPCR. But first, the RNA must be extracted from the sample. Manufacturers of RNA extraction kits have had difficulty keeping up with demand during the COVID-19 pandemic, hindering testing capacity worldwide. With new virus variants emerging, the need for better, faster tests is greater than ever. The team used a chelating agent made by Bio-Rad Laboratories called Chelex 100 resin to preserve SARS-CoV-2 RNA in samples for detection by RT-qPCR.

To validate the test, the team collected patient samples and stored them in either viral transport media, or the newly developed chelating-resin-buffer at the NIH Symptomatic Testing Facility. The samples in viral transport media were tested by the COVID-19 testing team using conventional RNA extraction and RT-qPCR testing. The samples in the chelating-resin-buffer were heated and the viral RNA was, then, tested by RT-qPCR. The new preparation significantly increased the RNA yield available for testing, compared to the standard method.

“We used nasopharyngeal and saliva samples with various virion concentrations to evaluate whether they could be used for direct RNA detection,” said Bin Guan, Ph.D., a fellow at the Ophthalmic Genomics Laboratory at NEI. “The answer was yes, with markedly high sensitivity. Also, this preparation inactivated the virus, making it safer for lab personnel to handle positive samples.”

“We think this novel methodology has clear benefits of increasing sensitivity, cost and time savings for testing,” said Robert B. Hufnagel, M.D., Ph.D., chief of the NEI Medical Genetics and Ophthalmic Genomic Unit, “The method stabilizes the RNA at room temperature for easier transport, storage, and handling in clinical settings.”

Related Links:
National Institutes of Health (NIH)


Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.