We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Innovative Protocol That Processes Saliva Samples with Bead Mill Homogenizer Before RT-PCR Testing Improves COVID-19 Detection Rate

By LabMedica International staff writers
Posted on 14 Jun 2021
Print article
Image: Schematic overview of sample processing and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assay workflow, depicting main steps (Photo courtesy of Nikhil S. Sahajpal)
Image: Schematic overview of sample processing and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assay workflow, depicting main steps (Photo courtesy of Nikhil S. Sahajpal)
The addition of a simple processing step to saliva samples before testing may improve COVID-19 detection rate, eliminate the challenges of nasopharyngeal testing, and facilitate mass surveillance, according to researchers.

A team of researchers from Augusta University (Augusta, GA, USA) has found that an innovative protocol that processes saliva samples with a bead mill homogenizer before real-time PCR (RT-PCR) testing results in higher sensitivity compared to NPS samples. The collection of nasopharyngeal swab (NPS) samples for COVID-19 diagnostic testing poses challenges including exposure risk to healthcare workers and supply chain constraints. Saliva samples are easier to collect but can be mixed with mucus or blood, and some studies have found they produce less accurate results.

The study included samples from a hospital and nursing home as well as from a drive-through testing site. In the first phase (protocol U), 240 matched NPS and saliva sample pairs were tested prospectively for SARS-CoV-2 RNA by RT-PCR. In the second phase of the study (SalivaAll), 189 matched pairs, including 85 that had been previously evaluated with protocol U, were processed in an Omni bead mill homogenizer before RT-PCR testing. An additional study was conducted with samples with both protocol U and SalivaAll to determine if bead homogenization would affect the clinical sensitivity in NPS samples. Finally, a five-sample pooling strategy was evaluated. Twenty positive pools containing one positive and four negative samples were processed with the Omni bead homogenizer before pooling for SARS-CoV-2 RT-PCR testing and compared to controls.

In Phase I, 28.3% of samples tested positive for SARS-CoV-2 from either NPS, saliva, or both. The detection rate was lower in saliva compared to NPS (50.0% vs. 89.7%). In Phase II, 50.2% of samples tested positive for SARS-CoV-2 from either saliva, NPS, or both. The detection rate was higher in saliva compared to NPS samples (97.8% vs. 78.9%). Of the 85 saliva samples tested with both protocols, the detection rate was 100% for samples tested with SalivaAll and 36.7% with protocol U.

According to the researchers, the underlying issues associated with lower sensitivity of saliva to RT-PCR testing could be attributed to the gel-like consistency of saliva samples, which made it difficult to accurately pipet samples into extraction plates for nucleic acid extraction. Adding the homogenization step rendered the saliva samples to uniform viscosity and consistency, making it easier to pipet for the downstream assay. The researchers also successfully validated saliva samples in the five-sample pooling strategy. The pooled testing results demonstrated a positive agreement of 95%, and the negative agreement was found to be 100%. Pooled testing will be critical for SARS-CoV-2 mass surveillance as schools reopen, travel and tourism resume, and people return to offices.

“Saliva as a sample type for COVID-19 testing was a game changer in our fight against the pandemic. It helped us with increased compliance from the population for testing along with decreased exposure risk to the healthcare workers during the collection process,” said lead investigator Ravindra Kolhe, MD, PhD, Department of Pathology, Medical College of Georgia, Augusta University. “Monitoring SARS-CoV-2 will remain a public health need. The use of a non-invasive collection method and easily accessible sample such as saliva will enhance screening and surveillance activities and bypass the need for sterile swabs, expensive transport media, and exposure risk, and even the need for skilled healthcare workers for sample collection.”

Related Links:
Augusta University

Gold Supplier
COVID-19 Neutralization Antibody Test
iFlash-2019-nCoV Neutralization Antibody Test
New
SARS-CoV-2 LAMP Test
SARS-CoV-2 LAMP Solution
New
POCT Analyzer
HTY-100 Plus POCT Analyzer
New
Automated Immunoassay Analyzer
Maverick Diagnostic System (MDS)

Print article

Channels

Molecular Diagnostics

view channel
Image: Primary angle closure glaucoma can cause permanent blindness if not treated quickly. A highly sensitive genetic test has been developed (Photo courtesy of Flinders University)

Highly Sensitive Genetic Test for Glaucoma Developed

In open-angle glaucoma, the angle in the eye where the iris meets the cornea is as wide and open as it should be, but the eye’s drainage canals become clogged over time, causing an increase in internal... Read more

Industry

view channel
Illustration

ELITechGroup Acquires Freezing Point Osmometry Provider GONOTEC

ELITechGroup (Puteaux, France) has acquired GONOTEC (Berlin, Germany), thus uniting two osmometry market leaders. The acquisition will also provides the industry with a full range of osmometry solutions... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.