We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App





Superfast, Portable COVID-19 Testing Method Detects SARS-CoV-2 Within One Second

By LabMedica International staff writers
Posted on 19 May 2021
Print article
Image: Schematic and photograph of COVID-19 sensor strip and the printed circuit board fabricated to produce a digital sensor output (Photo courtesy of Minghan Xian, Hao Luo, Xinyi Xia, Chaker Fares, Patrick H. Carey IV, Chan-Wen Chiu, Fan Ren, Siang-Sin Shan, Yu-Te Liao, Shu-Min Hsu, Josephine F. Esquivel-Upshaw, Chin-Wei Chang, Jenshan Lin, Steven C. Ghivizzani, and Stephen J. Pearton)
Image: Schematic and photograph of COVID-19 sensor strip and the printed circuit board fabricated to produce a digital sensor output (Photo courtesy of Minghan Xian, Hao Luo, Xinyi Xia, Chaker Fares, Patrick H. Carey IV, Chan-Wen Chiu, Fan Ren, Siang-Sin Shan, Yu-Te Liao, Shu-Min Hsu, Josephine F. Esquivel-Upshaw, Chin-Wei Chang, Jenshan Lin, Steven C. Ghivizzani, and Stephen J. Pearton)
A new superfast, portable COVID-19 testing method detects the SARS-CoV-2 virus much faster than the currently available methods.

Researchers from the University of Florida (Gainesville, FL, USA) and National Chiao Tung University (Hsinchu, Taiwan) have developed a rapid and sensitive testing method for COVID-19 biomarkers. The researchers, who previously demonstrated detection of biomarkers relevant in epidemics and emergencies, such as the Zika virus, heart attacks, and cerebral spinal fluid leaks, leveraged their expertise to develop a sensor system that provides detection within one second, which is far faster than current COVID-19 detection methods.

Detecting the presence of the virus requires amplifying the numbers of the biomarker, such as the copies of viral ribonucleic acid in the common polymerase chain reaction technique for COVID-19 detection, or amplifying the binding signal for a target biomarker. The group’s method amplifies the binding signal for a target biomarker. During measurement, sensor strips are connected to a circuit board via a connector, and a short electrical test signal gets sent between the gold electrode bonded with COVID antibody and another auxiliary electrode. This signal is then returned to the circuit board for analysis. While the system’s sensor strips clearly must be discarded after use, the test circuit board is reusable which means that the cost of testing may be greatly reduced.

“This could alleviate slow COVID-19 testing turnaround time issues,” said Minghan Xian, an author and a chemical engineering doctoral candidate at the University of Florida. “Our biosensor strip is similar to commercially available glucose test strips in shape, with a small microfluidic channel at the tip to introduce our test fluid. Within the microfluidic channel, a few electrodes are exposed to fluid. One is coated with gold, and COVID-relevant antibodies are attached to the gold surface via a chemical method.”

Related Links:
University of Florida
National Chiao Tung University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS-CoV-2 RT-PCR Assay
Reliance SARS-CoV-2 RT-PCR Assay Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.