We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Enzyme Pair Identified as Target for Melanoma Chemotherapy

By LabMedica International staff writers
Posted on 07 Dec 2017
A team of cancer researchers has identified a pair of enzymes that they say could serve as therapeutic targets whose inhibition would block the growth of metastatic melanoma.

Bromodomain and extraterminal domain inhibitors (BETi) represent promising therapeutic agents for metastatic melanoma, yet their mechanism of action remains unclear. More...
BET inhibitors are a class of drugs with anti-cancer, immunosuppressive, and other effects that are in clinical trials in the United States and Europe and are widely used in research. These molecules reversibly bind the bromodomains of bromodomain and extraterminal motif (BET) proteins BRD2, BRD3, BRD4, and BRDT, and prevent protein-protein interaction between BET proteins and acetylated histones and transcription factors.

Investigators at Mount Sinai School of Medicine (New York, NY, USA) reported in the November 16, 2017, issue of the journal Molecular Cell that they had identified AMIGO2 (Adhesion Molecule With Ig Like Domain 2), a transmembrane protein, as a BET target gene essential for melanoma cell survival. AMIGO2 was upregulated in melanoma cells and tissues compared to human melanocytes and nevi, and AMIGO2 silencing in melanoma cells induced G1/S arrest followed by apoptosis.

The investigators also reported that they had identified the pseudokinase PTK7 (Protein Tyrosine Kinase 7) as an AMIGO2 interactor whose function was regulated by AMIGO2. These results explained the mechanisms underlying the therapeutic effects of BETi in melanoma and suggested that the AMIGO2-PTK7 axis was a targetable pathway for treatment of metastatic melanoma.

"Melanoma is the most aggressive form of skin cancer, affecting more and more patients," said senior author, Dr. Emily Bernstein, associate professor of oncological sciences and dermatology at Mount Sinai School of Medicine. "While immunotherapy and targeted therapies have significantly improved the outcome for some metastatic melanoma patients, they have had success in a small subset of patients and can cause significant toxic side effects. Thus, their limitations underscore the need for new therapies, highlighting the importance of this research's discovery of novel targets."

Related Links:
Mount Sinai School of Medicine


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.