We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genetic Tool Monitors and Manipulates Cellular Protein Aggregates

By LabMedica International staff writers
Posted on 30 Oct 2017
A newly developed genetic tool allows researchers to track the level of protein aggregation in cells, and to a certain extent, manipulate or eliminate the aggregates.

Protein aggregation is a hallmark of many diseases but also underlies a wide range of positive cellular functions. More...
This phenomenon has been difficult to study because of a lack of quantitative and high-throughput cellular tools.

To correct this lack, investigators at the Boston University College of Engineering (MA, USA) developed a synthetic genetic tool to sense and control protein aggregation. This tool - called yTRAP for yeast Transcriptional Reporting of Aggregating Proteins - was composed of two parts: one segment attached to the protein of interest and the other produced a fluorescent signal to measure the amount of aggregation in the cell.

The investigators worked with a yeast model system. They ported in the October 19, 2017, online edition of the journal Cell that by utilizing high-throughput screens, they were able to identify prion-curing mutants and engineer “anti-prion drives” that reversed the non-Mendelian inheritance pattern of prions and eliminated them from yeast populations. They extended ther technology to yeast RNA-binding proteins (RBPs) by tracking their propensity to aggregate, searching for co-occurring aggregates, and uncovering a group of coalescing RBPs through screens enabled by the platform.

This work established a quantitative, high-throughput, and generalized technology to study and control diverse protein aggregation processes in cells.

"Protein aggregates can cause a cell to gain or lose a function," said senior author Dr. Ahmad S. Khalil, assistant professor of biomedical engineering at Boston University College of Engineering. "It could be beneficial or harmful. For example, it could allow a cell to survive stressful conditions or change its metabolic function to digest a different type of sugar. And the discovery of these beneficial functions has often been serendipitous."

Related Links:
Boston University College of Engineering


New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
POC Helicobacter Pylori Test Kit
Hepy Urease Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.