We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Loss of p53 Promotes Survival of Cancer Stem Cells

By LabMedica International staff writers
Posted on 26 Oct 2017
Cancer researchers have found that the cellular cleansing process known as mitophagy is linked to the development and progression of liver cancer.

Mitophagy is the selective degradation of mitochondria by autophagy. More...
It often occurs to defective mitochondria following damage or stress. In addition to the selective removal of damaged mitochondria, mitophagy is also required to adjust mitochondrial numbers to changing cellular metabolic needs, for steady-state mitochondrial turnover, and during certain cellular developmental stages, such as during cellular differentiation of red blood cells.

Investigators at the University of Southern California (Los Angeles, USA) reported in the October 12, 2017, online edition of the journal Molecular Cell that mitophagy promoted the maintenance of hepatic cancer stem cells (CSCs) through the loss of the tumor suppressor protein p53, which was closely associated with the mitochondria.

When mitophagy was inhibited, the p53 protein on mitochondria was phosphorylated at serine-392 by the enzyme PINK1, a kinase associated with mitophagy. The phosphorylated p53 was then translocated into the nucleus, where it bound to the NANOG promoter. This binding prevented the OCT4 and SOX2 transcription factors from activating the expression of NANOG, a transcription factor critical for maintaining the stem cell properties and the self-renewal ability of CSCs, resulting in the reduction of hepatic CSC populations.

"Liver cancer is difficult to treat, and most patients who are diagnosed with it will die within a five-year period," said senior author Dr. Jing-Hsiung James Ou, professor of molecular microbiology and immunology at the University of Southern California. "My team has identified how liver cancer stem cells are maintained. Without these "seeds of cancer," liver tumors would shrink and eventually disappear. Now that we understand the molecular process, we will be able to target this pathway to stop the production of cancer stem cells. If cancer stem cells are gone, cancer is gone."

Related Links:
University of Southern California


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.