We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




DNA-Based Vaccine Shown Safe and Effective

By LabMedica International staff writers
Posted on 16 Oct 2017
Print article
Image: A digitally colorized transmission electron micrograph (TEM) of Zika (Photo courtesy of the CDC).
Image: A digitally colorized transmission electron micrograph (TEM) of Zika (Photo courtesy of the CDC).
A team of vaccine developers used an advanced electroporation method to deliver and evaluate a new generation DNA-based vaccine designed to protect against Zika virus (ZIKV) infection.

Investigators at the University of Pennsylvania (Philadelphia, USA), Inovio Pharmaceuticals (Plymouth Meeting, PA, USA), GeneOne Life Science (Seoul, Korea), and The Wistar Institute (Philadelphia, PA, USA) collaborated in this effort. They used Inovio's proprietary electroporation device, Cellectra, to vaccinate two groups of 20 participants with two different doses of GeneOne Life Science's GLS-5700 DNA-based vaccine candidate.

Electroporation uses controlled, millisecond electrical pulses to create temporary pores in the cell membrane and allow dramatic cellular uptake of a synthetic DNA immunotherapy previously injected into muscle or skin. The cellular machinery then uses the DNA’s instructions to produce one or more proteins associated with the targeted disease. These foreign protein(s), or antigen(s), mimic the presence of an actual pathogen and induce an immune response to provide future protection against the pathogen or eliminate cells infected with an infectious disease or cancer.

In the current study, the GLS-5700 DNA vaccine, which encodes the ZIKV pre-membrane and envelope proteins, was administered by electroporation to two groups of 20 participants each. The participants received either one milligram or two milligrams of vaccine at baseline, four weeks, and 12 weeks.

Results published in the October 4, 2017, online edition of the New England Journal of Medicine revealed that by two weeks after the final dose all study participants had developed Zika-specific antibodies and 80% had produced significant neutralizing antibodies against the virus. Furthermore, serum from the study participants was able to protect immunocompromised mice from developing the disease after infection with Zika virus, indicating that the vaccine-induced antibodies could prevent infection in vivo.

By the 14-week point, no serious adverse events had been reported, although local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants.

"Synthetic DNA vaccines are an ideal approach for emerging infectious diseases like Zika," said contributing author Dr. David B. Weiner, executive vice president of The Wistar Institute. "This new generation of DNA vaccines can be designed and manufactured rapidly, they appear to be highly predictable for the generation of immunity in humans, have significant conceptual safety advantages, and they are more stable than most traditional vaccines, making them exceptionally practical to distribute during outbreaks, especially in regions where resources are limited and we need to be able to respond quickly to curb an emerging epidemic."

Related Links:
University of Pennsylvania
Inovio Pharmaceuticals
GeneOne Life Science
The Wistar Institute
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Total Thyroxine Assay
Total Thyroxine CLIA Kit
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.