We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Potential Peptide Drugs Block Influenza Virus Activity

By LabMedica International staff writers
Posted on 12 Oct 2017
A recent paper described the design and structural characterization of a class of potent peptide inhibitors specifically targeted to block the activity of influenza virus hemagglutinin.

Influenza hemagglutinin (HA) is a glycoprotein found on the surface of influenza viruses. More...
It is responsible for binding the virus to cells with sialic acid on the membranes, such as cells in the upper respiratory tract or erythrocytes. It is also responsible for the fusion of the viral envelope with the endosome membrane, after the pH has been reduced.

Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential new pandemics, emerging viruses, and constantly mutating circulating strains. Towards this end, investigators at The Scripps Research Institute (La Jolla, CA, USA) and Janssen Research & Development (Beerse, Belgium) designed and characterized a class of potent peptide inhibitors against influenza HA. The peptide design was based on complementarity determining region (CDR) loops of anti-HA human broadly neutralizing antibodies, FI6v3 and CR9114.

The peptide design incorporated amino-acid building blocks not found in natural proteins, and this, as well as their cyclic structures, rendered them relatively resistant to enzymes that quickly clear peptide compounds from the bloodstream.

Results published in the September 28, 2017, online edition of the journal Science revealed that the optimized peptides exhibited nanomolar affinity and neutralization against group 1 influenza A viruses including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors were found to bind to the highly conserved stem epitope and blocked the low pH-induced conformational rearrangements associated with membrane fusion.

"Making small molecules that do essentially what these larger, broadly neutralizing antibodies do is a really exciting and promising strategy against influenza, as our new results show," said senior author Dr. Ian Wilson, professor of structural biology at The Scripps Research Institute. "There has been skepticism in the field that we could get such good results with such small molecules, but this study proves that we can."

Related Links:
Scripps Research Institute
Janssen Research & Development


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.