We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Anticancer Compounds Found in Medicinal Plant

By LabMedica International staff writers
Posted on 11 Oct 2017
Compounds isolated from the medicinal plant Ambrosia arborescens or derived from them synthetically were found to have potent toxic effect on cancer stem cells in three different breast cancer cell lines.

Investigators at Lund University (Sweden) examined the anti-cancer activity of sesquiterpene lactones (SLs) isolated from A. More...
arborescens and of synthetic derivatives in breast cancer cell lines, with a specific focus on activity against cancer stem cells (CSCs). Sesquiterpene lactones are a class of chemical compounds comprising three isoprene units and containing a lactone ring. They are found in many plants and can cause allergic reactions and toxicity if overdosed.

For the current study, the breast cancer cell lines MCF-7, JIMT-1, and HCC1937 and the normal-like breast epithelial cell line MCF-10A were treated with the SLs damsin and coronopilin, isolated from A. arborescens, and with ambrosin and dindol-01, synthesized using damsin.

Doses of the compounds in the micromolar range were used for investigating effects on cell proliferation, cell cycle phase distribution, cell death, micronuclei formation, and cell migration. Western blot analysis was used to investigate proteins involved in cell cycle regulation as well as in the NF-kappaB pathway, since SLs have been shown to inhibit this transcription factor. Specific CSC effects were investigated using three different CSC assays.

Results published in the September 1, 2017, online edition of the journal PLOS One revealed that that all compounds inhibited tumor necrosis factor-alpha (TNF-alpha)-induced translocation of NF-kappaB to the cell nucleus. Dose response assays showed that all compounds were cytotoxic to the breast cancer cell lines (MCF-7, JIMT-1, and HCC1937) as well as to the MCF-10A normal-like breast epithelial cell line; however, the latter cell line was least affected. Damsin and ambrosin treatment increased the number of micronuclei, and another sign of DNA damage was the increased level of p53. The most toxic compound was ambrosin, which was also found to reduce the CSC subpopulation of the JIMT-1 cell line.

"Both the natural and the synthetic substances inhibit the growth and spread of cancer stem cells in breast cancer cell lines. This is the first time that it has been successfully proven by research", said senior author Dr. Stina Oredsson, professor of biology at Lund University. "Different cancer cells have different abilities to survive chemotherapy. Cancer stem cells can be considered the most dangerous type of cancer cells, as they appear to have an inherent resistance to the chemotherapeutic drugs used today. Our results can contribute to the development of new drugs against cancer stem cells but, unfortunately, it takes a long time to get from basic research to usable drugs."

Related Links:
Lund University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.