We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Mechanism Identified Protects Cells from Virulence Factors

By LabMedica International staff writers
Posted on 10 Oct 2017
A team of molecular microbiologists has identified the mechanism that allows some cells to survive invasion by pathogenic bacteria such as species of Yersinia, which cause a range of illness from plague to gastrointestinal disease in humans.

Many pathogens deliver virulence factors or effectors into host cells in order to evade host defenses and establish infection. More...
In the case of Yersinia, this is the protein YopJ, an acetyltransferase that binds to a conserved alpha-helix of MAPK kinases. Although such effector proteins disrupt critical cellular signaling pathways, they also trigger specific anti-pathogen responses, a process termed “effector-triggered immunity.”

Yersinia inactivates critical proteins of the NF-kappaB and MAPK signaling cascade, thereby blocking inflammatory cytokine production but also inducing apoptosis. Yersinia-induced apoptosis requires the kinase activity of receptor-interacting protein kinase 1 (RIPK1), a key regulator of cell death, NF-kappaB, and MAPK signaling.

Investigators at the University of Pennsylvania (Philadelphia, USA) reported in the August 30, 2017, online edition of the Journal of Experimental Medicine that Yersinia-induced apoptosis was critical for host survival, containment of bacteria in granulomas, and control of bacterial burdens in vivo. They demonstrated that this apoptotic response provided a cell-extrinsic signal that promoted optimal innate immune cytokine production and antibacterial defense, demonstrating a novel role for RIPK1 kinase–induced apoptosis in mediating effector-triggered immunity to circumvent pathogen inhibition of immune signaling.

Working with a line of mice that carried a mutated, inactive form of RIPK1, the investigators showed that when these mice were infected with Yersinia, their cells did not undergo apoptosis. Instead, these animals became extremely sensitive to infection, succumbing to an infection that normal mice almost always survived. Bacteria could be found dispersed throughout the body, whereas in normal mice Yersinia was typically confined to the lymph nodes, spleen, and liver.

"RIPK1 sits at a key decision point for the cell," said senior author Dr. Igor E. Brodsky, assistant professor in of pathobiology at the University of Pennsylvania. "Depending on the stimuli the cells see, this protein can transduce a signal to activate gene expression, programmed cell death, or apoptosis, or it can activate another form of cell death called programmed necrosis. In the context of an infection, the cells that are dying are talking to the other cells that are not infected. I do not think of it as altruistic, exactly, but it is a way for the cells that cannot respond any longer to still alert their neighbors that a pathogen is present."

Related Links:
University of Pennsylvania


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
New
Automated PCR Setup
ESTREAM
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The RNA-seq based diagnostic test for pediatric leukemia ensures better outcomes for children with this common cancer (Photo courtesy of Qlucore)

RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia

A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.