Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Beta-cells Heterogeneity Uncovered by Tracing Developmental Origins

By LabMedica International staff writers
Posted on 05 Oct 2017
Heterogeneity among β-cells has recently become evident, and it is thought that this heterogeneity might play a role in the progression of diabetes. More...
Researchers have developed a system that enables tracing of the developmental history of β-cells by genetic barcoding and multicolor imaging. In a study using the zebrafish model, they found that different histories of β-cells generate functional and proliferative heterogeneity during islet growth.

The tracing system, called “Beta-bow”, was developed by a research team led by Dr. Nikolay Ninov, group leader at the DFG research center for Regenerative Therapies Dresden (CRTD) at Technische Universitaet Dresden (Dresden, Germany). The project was led by CRTD postdoc Sumeet Pal Singh, PhD. In addition, Sharan Janjuha (PhD-student, DIGS-BB) established the assay for calcium imaging. Additional researchers include collaborators from Daiichi Sankyo Co,Ltd (Japan), Oxford University (UK), and CRTD (Germany).

Tracing the history of individual cells in the developing organism can reveal functional differences among seemingly uniform cells. This knowledge is important for defining the characteristics of highly regenerative cells in order to target them for cellular therapies, as well as to prevent the formation of unfit cells, which compromise the overall health of the organism. The study introduced here presents a new method for tracing the history of β-cells, which perform the essential function of secreting insulin in response to glucose.

The researchers traced β-cells with regards to their proliferation, function, and time of differentiation in the zebrafish as a powerful genetic model. The study showed that β-cells with different developmental histories co-exist together, which leads to the formation of dynamic sub-populations that differ in their potential for undergoing proliferation and performing functional tasks. The study also revealed the onset of β-cell function in zebrafish, which opens new avenues to investigate how β-cells acquire a functional state using this model.

“Even 20 years after the onset of Type 1 diabetes, some β-cells can survive in the pancreas, perhaps because these cells are different from the rest, which allows them to hide from the immune system and to escape autoimmune destruction,” said Dr. Ninov. “Curiosity, and the drive to make an original contribution towards a cure for diabetes by learning more about the basic biology of β-cells,” motivates Nikolay Ninov in his daily work. The ability to directly visualize the evolution of β-cell heterogeneity in zebrafish will help to understand the dynamic regulation of β-cell sub-populations at the molecular level. This knowledge is of crucial importance for the subsequent development of effective strategies for β-cell regeneration and protection in diabetes.

“As a next step, we will use our model and cell-tracing methods to understand the signals that instruct β-cells to acquire a functional state. In particular, we found that in zebrafish this process takes only a few days after the birth of the cells, whereas it is difficult to achieve the formation of functional β-cells from human stem cells in vitro. Thus, our hypothesis is that the in vivo environment in the zebrafish pancreas provides powerful signals for rapid β-cell functional maturation. We will now identify these signals, as this knowledge can help to produce functional human β-cells in vitro for transplantation purposes,” said Dr. Ninov.

The study, by Singh SP et al, was published September 22, 2017, in the journal Nature Communications.

Related Links:
Technische Universitaet Dresden


New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
New
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.