Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genetically Encoded Sensors Determine Intracellular GTP Levels

By LabMedica International staff writers
Posted on 28 Sep 2017
A new class of genetically encoded sensors is able to rapidly detect changes in GTP (guanosine-5'-triphosphate) levels in living cells.

Although GTP plays an essential role in multiple cellular processes, including protein synthesis, cytoskeleton maintenance and function, nuclear and intracellular transport, and intracellular signaling tools for quantitative evaluation of GTP levels in live cells have not been available.

To fill this gap, investigators at the Roswell Park Cancer Institute (Buffalo, NY, USA) developed and characterized genetically encoded GTP sensors, which they constructed by inserting a circularly permuted yellow fluorescent protein (cpYFP) into a region of the bacterial G protein, FeoB. More...
FeOB is a ferrous iron uptake system, which belongs to the Ferrous Iron Uptake (FeoB) transporter family that undergoes a GTP-driven conformational change.

The investigators reported in the September 4, 2017, online edition of the journal Nature Methods that GTP binding to these sensors resulted in a ratiometric change in their fluorescence, thereby providing an internally normalized response to changes in GTP levels while minimally perturbing those levels. Mutations introduced into FeoB to alter its affinity for GTP created a series of sensors with a wide dynamic range. In mammalian cells the sensors showed consistent changes in ratiometric signal upon depletion or restoration of GTP pools.

The investigators stated that their results showed that these GTP evaluators (GEVALs) were suitable for detection of spatiotemporal changes in GTP levels in living cells and for high-throughput screening of molecules that modulate GTP levels.

“Our sensors represent a new and unique tool for assessing changes in GTP levels in cell populations and individual cells, which may in turn point the way to effective strategies for suppressing or even preventing tumor growth,” said senior author Dr. Mikhail Nikiforov, professor of oncology in the department of cell stress biology at Roswell Park Cancer Institute. “This is an early finding that will have to be further developed through additional research, but it suggests opportunities for developing therapies that interfere with GTP metabolism by targeting key enzymes - perhaps existing therapies as well as new drugs yet to be developed.”

Related Links:
Roswell Park Cancer Institute


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Collection and Transport System
PurSafe Plus®
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.