We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanoparticle Reagent Simplifies Gene Expression Programming

By LabMedica International staff writers
Posted on 13 Sep 2017
Novel nanoparticle carriers were used to deliver mRNA directly to specific cell types (T-cells of the immune system and blood stem cells) in order to induce short-term changes in gene expression that could be harnessed to treat diseases ranging from cancer to diabetes.

Therapies based on immune cells have been applied for a variety of diseases. More...
However, the viral and electroporation methods used to create such cytoreagents are complex and expensive. Therefore, investigators at the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) developed targeted mRNA nanocarriers that were simply mixed with cells to reprogram them via transient gene expression. The nanoparticles were loaded with a gene-editing tool that snipped out natural T-cell receptors, and then was paired with genes encoding a "chimeric antigen receptor" or CAR, a synthetic molecule designed to attack cancer cells. Ultimately, the nanoparticles were removed from the body like other cell waste.

This approach was called "hit-and-run" genetic programming, since the transient effect of mRNA did not change the DNA, but it was enough to make a permanent impact on the cells' therapeutic potential.

In the August 30, 2017, online edition of the journal Nature Communications the investigators described three examples that they had used to establish that the approach was simple and generalizable. First, they demonstrated that nanocarriers delivering mRNA encoding a genome-editing agent could efficiently knockout selected genes in anti-cancer T-cells. Second, they imprinted a long-lived phenotype exhibiting improved antitumor activities into T-cells by transfecting them with mRNAs that encoded a key transcription factor of memory formation. Third, they showed how mRNA nanocarriers could program hematopoietic stem cells with improved self-renewal properties.

"Our goal is to streamline the manufacture of cell-based therapies," said senior author Dr. Matthias Stephan, a biomaterials expert at the Fred Hutchinson Cancer Research Center. "In this study, we created a product where you just add it to cultured cells and that is it -- no additional manufacturing steps. We developed a nanocarrier that binds and condenses synthetic mRNA and protects it from degradation. Just add water to our freeze-dried product. If you know from the scientific literature that a signaling pathway works in synergy, you could co-deliver mRNA in a single nanoparticle. Every cell that takes up the nanoparticle can express both."

Related Links:
Fred Hutchinson Cancer Research Center


Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.