We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Study Shows Curcumin Kills Childhood Neuroblastoma Cells

By LabMedica International staff writers
Posted on 08 Aug 2017
Print article
Treatment-resistant human childhood neuroblastoma tumor cells growing in culture were targeted and destroyed by the natural anti-cancer agent curcumin, which had been delivered to the cells via a novel class of cerium oxide nanoparticles.

Neuroblastomas are cancers that start in early nerve cells and commonly form in the tissue of the adrenal glands, near the kidneys with most cases appearing in children younger than five years old. High-risk neuroblastoma is difficult to treat and frequently develops resistance to standard therapies or recurs.

Investigators at the University of Central Florida (Orlando, USA) synthesized various formulations of nanoceria (cerium oxide nanoparticles) and dextran-coated nanoceria loaded with curcumin. Curcumin is known to have substantial anti-cancer properties, but its low solubility and poor stability have reduced its usefulness in medicinal applications.

In the current study, the anti-cancer activities of the nanoparticle formulations were explored in neuroblastoma models of both MYCN (N-myc proto-oncogene protein)-amplified and non-amplified cell lines. Amplification and overexpression of N-Myc can lead to tumorigenesis. Excess N-Myc is associated with a variety of tumors, most notably neuroblastomas where patients with amplification of the N-Myc gene tend to have poor outcomes.
Results published in the June 9, 2017, online edition of the journal Nanoscale revealed that ceria nanoparticles, coated with dextran and loaded with curcumin, induced substantial cell death in neuroblastoma cells while producing no or only minor toxicity in healthy cells. This formulation evoked prolonged oxidative stress and induced caspase-dependent apoptosis. Overall, nano-therapeutic treatments showed a more pronounced effect in MYCN-amplified cells, which are traditionally more resistant to drug therapies.

"This shows that nanoparticles can be an effective delivery vehicle for cancer drugs," said senior author Dr. Sudipta Seal, professor of materials science at the University of Central Florida. "More research is needed, but we are hopeful it could lead to more effective treatment of this devastating disease in the future."

Related Links:
University of Central Florida

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.