We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Microscopic Cubes Safely Deliver Toxic Drugs to Cancer Cells

By LabMedica International staff writers
Posted on 11 Jul 2017
Microscopic hydrogel cubes have proven to be an effective system for the delivery of toxic chemotherapeutic agents to cancer cells growing in culture.

Many potent anticancer drugs are hydrophobic and lack tumor selectivity, which limits their application in cancer therapy. More...
Although cubical hydrogels of poly(methacrylic acid) have been shown to exhibit excellent biocompatibility and versatility, they have not been investigated for hydrophobic drug delivery due to poor mechanical stability and incompatibility between hydrophobic drugs and a hydrophilic hydrogel network.

To overcome these limitations, investigators at the University of Alabama (Birmingham, USA) and Texas Tech University (Lubbock, USA) developed a method for preparing a multilayer hydrogel-based platform with controlled nanostructure, cubical shape, and redox-responsiveness for delivery of highly potent anticancer therapeutics such as the hydrophobic drug BA-TPQ (7-(benzylamino)-3,4-dihydro-pyrrolo[4,3,2-de]quinolin-8(1H)-one). BA-TPQ is an iminoquinone derivative and one of the most potent analogs of natural anti-cancer compounds discovered in the Philippine sponge Zyzzya fuliginosa. This drug demonstrates high potency against human breast and prostate cancer cell lines, but its use has been limited by poor solubility, low bioavailability, and undesirable toxicity.

The investigators prepared two-micrometer hydrogel cubes from layers of nontoxic cross-linked poly(methacrylic acid) formed on a removable porous scaffold. The BA-TPQ drug was absorbed into the cubes, which were then reduced to a powder by freeze-drying (lyophilization).

The investigators reported in the June 3, 2017, online edition of the journal Acta Biomaterialia that the BA-TPQ-loaded hydrogels maintained their cubical shape and pH-sensitivity after lyophilization, which would be advantageous for long-term storage. Conversely, the particles degraded in vitro in the presence of five-millimolar glutathione providing 80% drug release within 24 hours. Encapsulating BA-TPQ into hydrogels significantly increased its transport via Caco-2 cell monolayers used as a model for oral delivery where the apparent permeability of BA-TPQ-hydrogel cubes was approximately two-fold higher than that of BA-TPQ alone. BA-TPQ-hydrogel cubes exhibited better anticancer activity against HepG2 and Huh7 hepatoma cells compared to the non-encapsulated drug.

Surprisingly, normal liver cells had a lower sensitivity to BA-TPQ-hydrogel cubes compared to those of cancer cells. In addition, encapsulating BA-TPQ in the hydrogels amplified the potency of the drug via down-regulation of MDM2 (Mouse double minute 2 homolog) oncogenic protein and upregulation of p53 (a tumor suppressor) and p21 (cell proliferation suppressor) expression in HepG2 liver cancer cells.

The results obtained in this study led the investigators to say that, "We believe that our novel drug-delivery platform for the highly potent anti-cancer drug BA-TPQ provides a facile method for encapsulation of hydrophobic drugs and can facilitate enhanced efficacy for liver cancer therapy."

Related Links:
University of Alabama
Texas Tech University

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.