We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Bifunctional Nanoparticles Show Potential in Cancer Models

By LabMedica International staff writers
Posted on 19 Jun 2017
Print article
Image: A photomicrograph showing T-cells (red) and tumor cells (green) incubated with control particles (left) or immunoswitch particles (right). The T-cells that have attached to tumor cells are indicated by green arrows (Photo courtesy of Alyssa Kosmides, Johns Hopkins University).
Image: A photomicrograph showing T-cells (red) and tumor cells (green) incubated with control particles (left) or immunoswitch particles (right). The T-cells that have attached to tumor cells are indicated by green arrows (Photo courtesy of Alyssa Kosmides, Johns Hopkins University).
To be successful, an immunotherapeutic approach for treating cancer must overcome the immunosuppressive effects of the tumor microenvironment; a novel bifunctional nanoparticle does just that.

To counteract the immunosuppressive tumor microenvironment, investigators at Johns Hopkins University (Baltimore, MD, USA) coated 100 nanometers in diameter paramagnetic iron particles with two different kinds of antibodies. The pair of antibodies was crafted to block simultaneously the inhibitory checkpoint PD-L1 (programmed death ligand 1) signal while stimulating T-cells via the 4-1BB co-stimulatory pathway. The investigators coined the term "immunoswitch" to describe these novel bifunctional particles.

The investigators tested immunoswitch therapy in several mouse melanoma and colon cancer models. They reported in the June 7, 2017, online edition of the journal ACS Nano that this treatment significantly delayed tumor growth and extended survival in multiple mouse cancer models in comparison to the use of soluble antibodies or nanoparticles separately conjugated with the inhibitory and stimulating antibodies. The immunoswitch-treated mice developed tumors that were nearly 75% smaller than those in animals that received no treatment, whereas soluble antibody only reduced tumor growth by approximately 25%. Half of immunoswitch-treated mice survived after 30 days, whereas all untreated mice died by day 22.

Immunoswitch particles enhanced effector-target cell conjugation and bypassed the requirement for previous knowledge of tumor antigens. Furthermore, the use of the immunoswitch nanoparticles resulted in an increased density, specificity, and in vivo functionality of tumor-infiltrating CD8+ T-cells.

"Immunotherapies have significant potential and yet room for improvement," said senior author Dr. Jonathan P. Schneck, professor of pathology at Johns Hopkins University. "The improvement here was to make, for the first time, a nanoparticle that can interact simultaneously with multiple types of cells in the complex tumor microenvironment, dramatically increasing its effectiveness. The double-duty immunoswitch particles were clearly more effective than a mixture of nanoparticles that each targeted just one protein and acted in a synergistic fashion, but we do not yet know why. It may be that the immunoswitch particles' success comes from bringing T-cells and their targeted tumor cells into close proximity."

Related Links:
Johns Hopkins University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Calprotectin Assay
Fecal Calprotectin ELISA
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Karius Focus BAL is designed to quickly identify the etiology of lung infections and improve diagnostic yield over standard of care testing (Photo courtesy of Karius)

Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections

Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.