We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




MicroRNA Regulates Immune Response in Intestinal Inflammation

By LabMedica International staff writers
Posted on 31 May 2017
Print article
Image: A micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Image: A micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Results presented in a recently published paper revealed a previously unappreciated role for a specific microRNA in regulating the innate immune response during intestinal inflammation.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Investigators at the University of Colorado reported in the May 9, 2017, online edition of The Journal of Experimental Medicine that the microRNA miR-223 was increased in intestinal biopsies from patients with active inflammatory bowel disease (IBD) and in preclinical models of intestinal inflammation. The miR-223 miRNA is produced by neutrophils and monocytes and has previously been shown to repress the messenger RNA encoding the protein NLRP3, a key component of the inflammasome. Inflammasomes are molecular platforms activated by cellular infection or stress that trigger the maturation of proinflammatory cytokines such as interleukin-1beta (IL-1beta) to engage innate immune defenses.

To determine the ramifications of increased miR-223 in IBD, the investigators created model systems by genetically engineering lines of mice to lack the miRNA. They found that mice lacking miR-223 expressed higher levels of NLRP3, causing increased IL-1beta production and enhanced susceptibility to intestinal inflammation.

In contrast, the nanoparticle-mediated overexpression of miR-223 reduced the severity of experimental colitis, NLRP3 levels, and IL-1beta release.

"Our study highlights the miR-223-NLRP3-IL-1beta regulatory circuit as a critical component of intestinal inflammation," said senior author Dr. Eóin McNamee, assistant professor of gastroenterology, immunology, and physiology at the University of Colorado. "miR-223 serves to constrain the level of NLRP3 inflammasome activation and provides an early brake that limits excessive inflammation. Genetic or pharmacologic stabilization of miR-223 may hold promise as a future novel therapy for active flares in IBD."

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit
New
Ultrasonic Cleaner
UC 300 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Karius Focus BAL is designed to quickly identify the etiology of lung infections and improve diagnostic yield over standard of care testing (Photo courtesy of Karius)

Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections

Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.