We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gene Expression Suggests Sexes Evolve Differently

By LabMedica International staff writers
Posted on 18 May 2017
A team of molecular geneticists has found that a large number of genes are expressed differently in men and women, which begins to explain why that despite sharing almost identical genomes the two sexes are distinctly dimorphic, with dissimilar disease susceptibilities and mutation rates.

To perform this study, investigators at the Weizmann Institute of Science called upon the resources of the Genotype-Tissue Expression project. More...
The GTEx project was designed to provide to the scientific community a resource with which to study human gene expression and regulation and its relationship to genetic variation. This project collects and analyzes multiple human tissues from donors who are also densely genotyped, to assess genetic variation within their genomes. By analyzing global RNA expression within individual tissues and treating the expression levels of genes as quantitative traits, variations in gene expression that are highly correlated with genetic variation. Correlations between genotype and tissue-specific gene expression levels will help identify regions of the genome that influence whether and how much a gene is expressed. GTEx will help researchers to understand inherited susceptibility to disease and will be a resource database and tissue bank for many studies in the future.

Using information made available by the GTEx project, the Weizmann Institute investigators comprehensively mapped human sex-differential genetic architecture across 53 tissues. By analyzing GTEx RNA-sequencing data from 544 adults, they identified approximately 6,500 genes that were differentially expressed in the reproductive tracts and tissues common to both sexes.

The investigators reported in reported in the February 7, 2017, online edition of the journal BMC Biology that sex-differential genes were related to various biological systems, which suggested new insights into the pathophysiology of diverse human diseases. They also identified a significant association between sex-specific gene transcription and reduced selection efficiency and accumulation of deleterious mutations, which might affect the prevalence of different traits and diseases. Many of the sex-specific genes that also underwent reduced selection efficiency were essential for successful reproduction in men or women. This seeming paradox might partially explain the high incidence of human infertility.

"In many species, females can produce only a limited number of offspring while males can, theoretically, father many more; so the species' survival will depend on more viable females in the population than males," said senior author Dr. Shmuel Pietrokovski, professor of molecular genetics at the Weizmann Institute of Science. "Thus natural selection can be more "lax" with the genes that are only harmful to males. Paradoxically, sex-linked genes are those in which harmful mutations are more likely to be passed down, including those that impair fertility. From this vantage point, men and women undergo different selection pressures and, at least to some extent, human evolution should be viewed as co-evolution. But the study also emphasizes the need for a better understanding of the differences between men and women in the genes that cause disease or respond to treatments."


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.