Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Stem Cell and 3D Printing Generate Viable Tissue

By LabMedica International staff writers
Posted on 11 May 2017
A team of Swedish cell biologists combined three-dimensional (3D) bio-printing with advanced stem cell technology to create viable cultures of cartilage tissue that had cellular and mechanical properties similar to patients’ natural cartilage.

Cartilage lesions can progress into secondary osteoarthritis and cause severe clinical problems in numerous patients. More...
To fill and cure such lesions, investigators at the University of Gothenburg developed a novel class of stem cells that could survive being injected by a three-dimensional printing method and then mature into functional cartilage tissue.

The investigators began with cartilage cells taken from patients undergoing knee surgery. These cells were then manipulated in a laboratory and transformed into induced pluripotent stem cells. The stem cells were expanded and encapsulated in a solution of nanofibrillated cellulose and printed into a structure using a three-dimensional (3D) bio-printer. Following printing, the stem cells were treated with growth factors that caused them to differentiate into cartilage tissue.

Much of the research effort involved finding a procedure to enable the cells to survive printing and multiply and a protocol that induced the cells to differentiate to form cartilage.

Results published in the April 6, 2017, online edition of the journal Scientific Reports revealed that pluripotency was initially maintained, and after five weeks, hyaline-like cartilaginous tissue with collagen type II expression and lacking tumorigenic Oct4 expression was observed in the three-dimensional (3D)-bio-printed constructs. Moreover, a marked increase in cell number within the cartilaginous tissue was detected by 2-photon fluorescence microscopy, indicating the importance of high cell densities in the pursuit of achieving good survival after printing.

“In nature, the differentiation of stem cells into cartilage is a simple process, but it is much more complicated to accomplish in a test tube. We are the first to succeed with it, and we did so without any animal testing whatsoever," said senior author Dr. Stina Simonsson, associate professor of cell biology at the University of Gothenburg. "We investigated various methods and combined different growth factors. Each individual stem cell is encased in nanocellulose, which allows it to survive the process of being printed into a three-dimensional (3D) structure. We also harvested media from other cells that contain the signals that stem cells use to communicate with each other - so called conditioned medium. In layman’s terms, our theory is that we managed to trick the cells into thinking that they are not alone.”


Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
Specimen Radiography System
TrueView 200 Pro
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Colorectal cancer under the microscope (Photo courtesy of Adobe Stock)

Unique Microbial Fingerprint to Improve Diagnosis of Colorectal Cancer

Colorectal cancer is the fourth most common cancer in the UK and the second deadliest. New research has revealed that it carries a unique microbial fingerprint, which could help doctors better understand... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.