We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Researchers Reevaluate Fungi to Produce New Drugs

By LabMedica International staff writers
Posted on 02 May 2017
Despite being the source of the first clinically administered antibiotic (penicillin), which was isolated by Alexander Fleming in 1928, the Penicillium species of fungi (Penicillia) continues to fascinate drug developers.

Investigators at the Chalmers University of Technology continued the tradition of seeking new drugs within the Penicillium species by sequencing the genomes of nine Penicillium species. More...
This new information together with 15 already published genomes, revealed an immense, unexploited potential for producing secondary metabolites by this genus.

The investigators reported in the April 3, 2017, online edition of the journal Nature Microbiology that they had identified a total of 1,317 putative biosynthetic gene clusters (BGCs), and that they had grouped polyketide synthase and non-ribosomal peptide synthetase based BGCs into gene cluster families that were mapped to known pathways.

The grouping of BGCs allowed the investigators to study the evolutionary trajectory of pathways based on 6-methylsalicylic acid (6-MSA) synthases. They cross-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway.

"We found that the fungi have enormous, previously untapped, potential for the production of new antibiotics and other bioactive compounds, such as cancer medicines," said first author Jens Christian Nielsen, a doctoral student in biology and biological engineering at the Chalmers University of Technology. "Previous efforts to find new antibiotics have mainly focused on bacteria. Fungi have been hard to study - we know very little of what they can do - but we do know that they develop bioactive substances naturally, as a way to protect themselves and survive in a competitive environment. This made it logical to apply our research tools to fungi."


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.