We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Organoid Culture System Used for Brain Cell Research

By LabMedica International staff writers
Posted on 24 Apr 2017
Print article
Image: Human stem cells derived from skin samples have been induced to form tiny, three-dimensional, brain-like cultures that behave similarly to cells in the human midbrain (Photo courtesy of the University of Luxembourg).
Image: Human stem cells derived from skin samples have been induced to form tiny, three-dimensional, brain-like cultures that behave similarly to cells in the human midbrain (Photo courtesy of the University of Luxembourg).
Brain cells - derived from pluripotent stem cells - growing in culture assemble into three-dimensional (3D), brain-like structures (organoids) that can serve as an experimental model system for studies into the cellular biology of the normal and diseased brain.

Research on human brain development and neurological diseases has been limited by the lack of advanced experimental in vitro models that truly recapitulate the complexity of the human brain. In an effort to resolve this dilemma, investigators at the University of Luxembourg used a precisely defined cocktail of growth factors and a novel treatment method to drive pluripotent stem cells to develop into a robust human brain organoid system that was highly specific to the midbrain. These human midbrain organoids contained spatially organized groups of dopaminergic neurons, which made them an attractive model for the study of Parkinson’s disease.

The investigators characterized the neuronal, astroglial, and oligodendrocyte differentiation of the midbrain organoids in detail in the April 13, 2017, online edition of the journal Stem Cell Reports. In addition, they demonstrated the presence of synaptic connections and electrophysiological activity. The complexity of this model was further highlighted by the myelination of neurites.

"Our cell cultures open new doors to brain research," said senior author Dr. Jens Schwamborn, professor of developmental and cellular biology at the University of Luxembourg. "We can now use them to study the causes of Parkinson's disease and how it could possibly be effectively treated. Our subsequent examination of these artificial tissue samples revealed that various cell types characteristic of the midbrain had developed. The cells can transmit and process signals. We were even able to detect dopaminergic cells - just like in the midbrain."

"On our new cell cultures, we can study the mechanisms that lead to Parkinson's much better than was ever the case before, "said Dr. Schwamborn." We can test what effects environmental impacts such as pollutants have on the onset of the disease, whether there are new active agents that could possibly relieve the symptoms of Parkinson's, or whether the disease could even be cured from its very cause. We will be performing such investigations next."

The investigators have established a biotech company, Braingineering Technologies Sarl to explore the commercial potential of brain organoid cultures for research and drug development.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.