We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Organoid Culture System Used for Brain Cell Research

By LabMedica International staff writers
Posted on 24 Apr 2017
Brain cells - derived from pluripotent stem cells - growing in culture assemble into three-dimensional (3D), brain-like structures (organoids) that can serve as an experimental model system for studies into the cellular biology of the normal and diseased brain.

Research on human brain development and neurological diseases has been limited by the lack of advanced experimental in vitro models that truly recapitulate the complexity of the human brain. More...
In an effort to resolve this dilemma, investigators at the University of Luxembourg used a precisely defined cocktail of growth factors and a novel treatment method to drive pluripotent stem cells to develop into a robust human brain organoid system that was highly specific to the midbrain. These human midbrain organoids contained spatially organized groups of dopaminergic neurons, which made them an attractive model for the study of Parkinson’s disease.

The investigators characterized the neuronal, astroglial, and oligodendrocyte differentiation of the midbrain organoids in detail in the April 13, 2017, online edition of the journal Stem Cell Reports. In addition, they demonstrated the presence of synaptic connections and electrophysiological activity. The complexity of this model was further highlighted by the myelination of neurites.

"Our cell cultures open new doors to brain research," said senior author Dr. Jens Schwamborn, professor of developmental and cellular biology at the University of Luxembourg. "We can now use them to study the causes of Parkinson's disease and how it could possibly be effectively treated. Our subsequent examination of these artificial tissue samples revealed that various cell types characteristic of the midbrain had developed. The cells can transmit and process signals. We were even able to detect dopaminergic cells - just like in the midbrain."

"On our new cell cultures, we can study the mechanisms that lead to Parkinson's much better than was ever the case before, "said Dr. Schwamborn." We can test what effects environmental impacts such as pollutants have on the onset of the disease, whether there are new active agents that could possibly relieve the symptoms of Parkinson's, or whether the disease could even be cured from its very cause. We will be performing such investigations next."

The investigators have established a biotech company, Braingineering Technologies Sarl to explore the commercial potential of brain organoid cultures for research and drug development.


New
Gold Member
Collection and Transport System
PurSafe Plus®
Portable Electronic Pipette
Mini 96
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.