We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Chemical Cocktail Enables Study of Totipotent Stem Cells

By LabMedica International staff writers
Posted on 19 Apr 2017
A team of developmental molecular biologists has formulated a chemical cocktail that enables the derivation of stem cells with unique functional and molecular features from mice and humans including the ability to maintain a state of totipotency that allows them to develop into extra-embryonic tissues such as placenta.

Under normal circumstances pluripotent stem cells such as those derived from embryonic tissue are unable to develop into tissues that support the developing embryo. More...
However, in the current report, which was published in the April 6, 2017, issue of the journal Cell, investigators at the Salk Institute for Biological Research described the discovery of a chemical cocktail - a simple combination of four chemicals and a growth factor - that enabled cultured mouse and human stem cells to generate both embryonic and extra-embryonic tissues.

These novel stem cells, which were capable of chimerizing both embryonic and extraembryonic tissues, were designated as extended pluripotent stem (EPS) cells. Notably, a single mouse EPS cell showed widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permitted generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibited interspecies chimeric competency in mouse conceptuses. The conceptus includes all structures that develop from the zygote, both embryonic and extraembryonic. It includes the embryo as well as the embryonic part of the placenta and its associated membranes - amnion, chorion (gestational sac), and yolk sac.

"During embryonic development, both the fertilized egg and its initial cells are considered totipotent, as they can give rise to all embryonic and extra-embryonic lineages. However, the capture of stem cells with such developmental potential in vitro has been a major challenge in stem cell biology," said contributing author Dr. Juan Carlos Izpisua Bemonte, a professor in the gene expression laboratories at the Salk Institute for Biological Studies. "This is the first study reporting the derivation of a stable stem cell type that shows totipotent-like bi-developmental potential towards both embryonic and extra-embryonic lineages. We believe that the derivation of a stable stem cell line with totipotent-like features will have a broad and resounding impact on the stem cell field."


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.