We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanoscale Device Developed for Separation of NA Mixtures

By LabMedica International staff writers
Posted on 24 Mar 2017
A team of Japanese engineers has developed a nanoscale device for the rapid separation of microRNA (miRNA) from mixtures of miRNA, RNA, and DNA.

MicroRNAs are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. More...
Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Investigators at Nagoya University have developed an innovative nanoscale device that can rapidly separate microRNA from DNA/RNA mixtures obtained from cells.

The device was fabricated by electron beam lithography on a quartz substrate to contain a 25×100 micrometer array of "nanopillars" (small columns with a diameter of 250 nanometers and height of 100 nanometers) in shallow "nanoslits" with a height of 100 nanometers. This separation approach using a top-down fabrication technique enabled the precise control of DNA conformation during electrophoresis and demonstrated that the geometric pattern of the nanopillar array could control the separation mode and enhance the throughput. The square pattern improved the resolution of separation proportionally to the applied electric field and transferred the larger DNA molecules more rapidly than it transferred the smaller molecules of miRNA. Combining nanoslit structures provided an entropic trapping effect and improved the speed of separation and resolution.

Feasibility studies, using a mixture of total RNA and genomic DNA, were performed to elucidate whether this technique was applicable over a wide size range of nucleic acids. Results published in the March 8, 2017, online edition of the journal Scientific Reports revealed that a mixture of genomic DNA, total RNA, and miRNA from HeLa cells could be separated within 100 microseconds.

"We believe that the nanobiodevice separates microRNA from mixtures through a combination of two different physical behaviors of confined polymers in the nanopoillar array, non-equilibrium transport and entropic trapping," said contributing author Dr. Noritada Kaji, associate professor of engineering at Nagoya University. "The applied electric field combines with the unique nanostructure of the nanobiodevice to generate a strong electric force that induces rapid concentration and separation."


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Hand-Held Immunofluorescence Analyzer
WS-Si1500
New
Silver Member
Quality Control Material
NATtrol Chlamydia trachomatis Positive Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The RNA-seq based diagnostic test for pediatric leukemia ensures better outcomes for children with this common cancer (Photo courtesy of Qlucore)

RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia

A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.