We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genetic Remodeling Transforms E. Coli into Intestinal Pathogen

By LabMedica International staff writers
Posted on 09 Mar 2017
A team of molecular microbiologists has traced the genetic steps that enable the common bacteria Escherichia coli to transform from a commensal organism into a pathogenic one.

Enteropathogenic Escherichia coli (EPEC), the cause of severe intestinal infection, employ a type III secretion system (T3SS) to inject effector proteins into intestinal epithelial cells. More...
These effectors subvert host cell processes to promote bacterial colonization.

Investigators at the Hebrew University of Jerusalem showed that the T3SS also functioned to sense the host cell and to trigger in response posttranscriptional remodeling of gene expression in the bacteria. They further showed that upon effector injection, the effector-bound chaperone (CesT), which remained in the EPEC cytoplasm, antagonized the posttranscriptional regulator CsrA.

In obtaining these results, the investigators showed that after attaching to the host by means of pili, the bacteria sensed attachment to the human intestinal cells and activated gene expression in response. This was demonstrated by engineering one of these genes to express a protein that stained the expressing bacteria to appear green under the microscope. Under microscopic examination, the investigators observed that only the attached bacteria fluoresced in bright green, whereas non-attached bacteria remained dark.

"The next steps include mapping in detail the genes that change their expression upon attachment, and describing the precise effects of this expression remodeling,” said senior author Dr. Ilan Rosenshine, professor of bacteriology at the Hebrew University of Jerusalem. “Another important issue is testing whether similar regulation is involved in the infection processes of other pathogens."


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
New
Gel Cards
DG Gel Cards
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.