We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Novel Culture Method for Activation of Cancer-Fighting T-Cells

By LabMedica International staff writers
Posted on 02 Mar 2017
A novel in vitro culture method enables disease fighting immune T-cells to overcome cancer's immunosuppressive effect in order to recognize and attack tumor cells upon being returned to the body.

Development of effective adoptive immunotherapy for many types of human cancer has been slow, often due to difficulties achieving robust expansion of natural tumor-specific T-cells from peripheral blood. More...
Investigators at the Mayo Clinic and the University of Washington hypothesized that antigen-driven T-cell expansion might best be triggered in vitro by acute activation of innate immunity to mimic a life-threatening infection.

To examine this theory, they subjected unfractionated peripheral blood mononuclear cells (PBMC) to a two-step culture regimen, first synchronizing their exposure to exogenous antigens with aggressive surrogate activation of innate immunity, followed by gamma-chain cytokine-modulated T-cell hyperexpansion.

In the first step, the PBMC culture was treated with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus paired Toll-like receptor agonists (resiquimod and LPS), which stimulated abundant IL-12 and IL-23 secretion. At this point the culture was exposed to various tumor antigens including MUC1 (Mucin 1, cell surface associated), a protein expressed by a large majority of cancers, including breast, pancreatic, lung, colorectal, ovarian, kidney, bladder, and multiple myeloma. Also included were HER2/neu (human epidermal growth factor receptor 2), a protein present in one-quarter to half of many types of cancer, and CMVpp65, a protein present in half of primary brain tumors.

In the second step, exposure to exogenous IL-7 or IL-7+IL-2 produced selective and sustained expansion of both CD4+ and CD8+ peptide-specific T-cells with a predominant interferon-gamma-producing T1-type, as well as the antigen-specific ability to lyse tumor targets. The investigators reported in the February 14, 2017, issue of the journal Oncotarget that it only took about three weeks to grow out cultures of natural T- cells able to recognize and target cancers expressing these proteins.

“Even though it is relatively easy to collect billions of T-cells directly from patient blood, it has historically proved difficult or impossible to unleash those T-cells’ natural ability to recognize and target cancer cells,” said senior author Dr. Peter Cohen, an immunotherapist at the Mayo Clinic. “We are pleased to help other investigators implement our culture method for their own cancer-associated proteins of interest.”


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
New
Laboratory Software
ArtelWare
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.