We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Artificial Stem Cells Promote Cardiac Repair in Mouse Model

By LabMedica International staff writers
Posted on 05 Jan 2017
A team of biomedical engineers created a novel class of artificial stem cells that mimic the function of cardiac stem cells and aid repair of damaged heart tissue without danger of adverse immune response or the possibility of tumor generation.

Results of recent studies have indicated that stem cells exert their beneficial effects mainly through secretion of regenerative factors and membrane-based cell-cell interaction with the injured cells. More...
Expanding on these findings, investigators at the University of North Carolina (Chapel Hill, USA) and North Carolina State University (Raleigh, USA) fabricated microparticles (CMMP, for cell-mimicking microparticles) from the biodegradable and biocompatible polymer poly(lactic-co-glycolic acid) or PLGA. The PLGA microparticles were loaded with growth factor proteins that had been harvested from cultured human cardiac stem cells. The particles were then coated with membranes from cardiac stem cells.

The investigators reported in the December 26, 2016, online edition of the journal Nature Communications that in a mouse model of myocardial infarction, injection of CMMPs led to preservation of viable myocardium and augmentation of cardiac functions similar to cardiac stem cell therapy. CMMPs (derived from human cells) did not stimulate T-cell infiltration in immuno-competent mice. In addition, since CMMPs are artificial constructs they cannot replicate, which eliminated the risk of tumor formation.

“The synthetic cells operate much the same way a deactivated vaccine works,” said senior author Dr. Ke Cheng, professor of molecular biomedical sciences at North Carolina State University and associate professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina. “Their membranes allow them to bypass the immune response, bind to cardiac tissue, release the growth factors, and generate repair, but they cannot amplify by themselves. So you get the benefits of stem cell therapy without risks. We are hoping that this may be a first step toward a truly off-the-shelf stem cell product that would enable people to receive beneficial stem cell therapies when they are needed, without costly delays.”

Related Links:
University of North Carolina
North Carolina State University

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
Capillary Blood Collection Tube
IMPROMINI M3
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.