We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Reprogramming Therapy Reverses Signs of Aging in Mouse Progeria Model

By LabMedica International staff writers
Posted on 28 Dec 2016
Researchers on the biology of aging have shown that when the type of cellular reprogramming used to produce pluripotent stem cells is applied intermittently to whole animals the aging process can be arrested or reversed without stimulating cancer development.

In vitro studies have demonstrated that cellular reprogramming to pluripotency reverses cellular age, but alteration of the aging process through reprogramming has not been directly demonstrated in living animals.

To extend cellular reprogramming to whole animals while avoiding the completely uncontrolled type of growth that could lead to tumor development, investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) chose to work with a mouse progeria model. More...
Animals with progeria show many signs of aging including DNA damage, organ dysfunction, and dramatically shortened lifespan.

To nullify the cancer threat, the investigators decided to induce partial reprogramming by short-term cyclic expression of the OSKM or Yamanaka reprogramming factors: Oct4 (octamer-binding transcription factor 4), Sox2 (SRY (sex determining region Y)-box 2), Klf4 (Kruppel-like factor 4), and c-Myc.

The investigators reported in the December 15, 2016, online edition of the journal Cell that partial reprogramming by short-term cyclic expression of the OSKM factors ameliorated cellular and physiological hallmarks of aging and prolonged lifespan by about 30% in the mouse progeria model. Similarly, expression of OSKM in vivo improved recovery from metabolic disease and muscle injury in older wild-type mice.

"Our study shows that aging may not have to proceed in one single direction," said senior author Dr. Juan Carlos Izpisua Belmonte, a professor in the gene expression laboratory at the Salk Institute for Biological Studies. "It has plasticity and, with careful modulation, aging might be reversed. Obviously, mice are not humans and we know it will be much more complex to rejuvenate a person. But this study shows that aging is a very dynamic and plastic process, and therefore will be more amenable to therapeutic interventions than what we previously thought."

The investigators warned that due to the complexity of aging in humans, potential anti-aging therapies based on these studies in mice may take up to 10 years to reach clinical trials.

Related Links:
Salk Institute for Biological Studies


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.