We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mechanism Explains How Colon Cancer Suppressor Protein Works

By LabMedica International staff writers
Posted on 22 Dec 2016
The intracellular protein NLRC3 (NLR family CARD domain containing 3) blocks growth of colon cancer by suppressing activation of mTOR (Mechanistic target of rapamycin) signaling pathways.

NLRs (nucleotide-binding domain and leucine-rich repeats) belong to a large family of cytoplasmic sensors that regulate a diverse range of biological functions. More...
One of these functions is to contribute to immunity against infectious diseases, but dysregulation of their functional activity leads to the development of inflammatory and autoimmune diseases. NLRC3 is a poorly characterized member of the NLR family and was identified in a genomic screen for genes encoding proteins bearing leucine-rich repeats (LRRs) and nucleotide-binding domains. Expression of NLRC3 was drastically reduced in the tumor tissue of patients with colorectal cancer compared to healthy tissues, highlighting an undefined potential function for this sensor in the development of cancer.

To learn more about a possible link between NLRC3 and colon cancer, investigators at St. Jude Children's Research Hospital (Memphis, TN, USA) worked with various mouse colon cancer models including those deficient or lacking in NLRC3.

The investigators reported in the December 12, 2016, online edition of the journal Nature that mice lacking NLRC3 were hyper-susceptible to colitis and development of colorectal tumors. A mouse strain with a tendency to develop colon polyps showed much greater tumor development when they lacked NLRC3, and overexpression of NLRC3 blocked tumor formation. The effect of NLRC3 was most dominant in enterocytes, in which it suppressed activation of the mTOR signaling pathways and inhibited cellular proliferation and stem-cell-derived organoid formation. NLRC3 associated with PI3K (Phosphoinositide 3-kinase) and blocked activation of the PI3K-dependent kinase AKT (Protein kinase B) following binding of growth factor receptors or Toll-like receptor 4.

"All of these complementary approaches to understanding NLRC3 allowed us to really nail it down that NLRC3 is important for protecting from abnormal colon cell growth, and when it is not present, tumors will develop," said senior author Dr. Kanneganti Thirumala-Devi, an immunologist at St. Jude Children's Research Hospital. "This suggested that if we can somehow induce NLRC3 expression clinically, it will block the signaling pathways that lead to tumorigenesis. In developing drug therapies, it might be difficult to target the PI3K-mTOR pathway itself, because it is such a central node in cell signaling. Thus, we could target NLRC3 itself and block tumorigenesis early on."

Related Links:
St. Jude Children's Research Hospital



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.