We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Development of Anti-Cancer Drugs May Overlook Compounds Useful for Humans

By LabMedica International staff writers
Posted on 21 Dec 2016
A large proportion of cancer research is done with mouse models; however a recent paper suggested that differences between the mouse and human genomes may lead to promising approaches to curing the disease in humans being overlooked.

Work done with mice has revealed that upregulation of anti-apoptotic (anti-death) Bcl-2 proteins in certain tumors confers cancer cell resistance to chemotherapy or radiation. More...
Members of the anti-apoptotic Bcl-2 proteins, including Bcl-2, Mcl-1, Bcl-xL, Bcl-W, and Bfl-1 inhibit apoptosis by selectively binding to conserved alpha-helical regions, named BH3 domains, of pro-apoptotic proteins such as Bim, tBid, Bad, or NOXA (Phorbol-12-myristate-13-acetate-induced protein 1).

Five anti-apoptotic proteins have been identified that interact with various degrees of selectivity with BH3 containing pro-apoptotic counterparts. Cancer cells present various and variable levels of these proteins, making it difficult to design therapeutic drugs to promote apoptosis. Recently, BH3 profiling was introduced as a method to classify cancer cells based on their ability to resist apoptosis following exposure to selected BH3 peptides. However, these studies were based on binding affinities measured with model BH3 peptides and Bcl-2-proteins taken from mouse sequences.

Investigators at the University of California, Riverside (USA) wrote in the November 18, 2016, online edition of the journal ACS Chemical Biology that while the majority of these interactions were conserved between mice and humans, they found surprisingly that human NOXA bound to human Bfl-1 potently and covalently via conserved cysteine residues, with over two orders of magnitude increased affinity over Mcl-1. This finding suggested that some assumptions of the original BH3 profiling should be revisited and that perhaps further targeting efforts should be redirected towards Bfl-1, for which no suitable specific inhibitors or pharmacological tools have been reported.

"What we discovered is that while these early studies done with the mouse versions of the proteins NOXA, Mcl-1, and Bfl-1 were correct, these do not entirely apply to human proteins," said senior author Dr. Maurizio Pellecchia, professor of biomedical sciences at the University of California, Riverside. "This is because human NOXA and Bfl-1 are different from their mouse counterparts. Indeed, we found that when we profiled human NOXA against human anti-apoptotic proteins, the highest affinity was for Bfl-1, and not for Mcl-1, making Bfl-1 a much more relevant drug target than previously assumed."

"Academics and pharmaceutical companies are spending considerable amount of effort and resources in finding antagonists to Mcl-1," said Dr. Pellecchia. "While these agents are surely useful in certain conditions that are exacerbated by over-production of Mcl-1, we have shown that more focus on Bfl-1 is warranted. Our research provides new insights on the mechanisms of cancer resistance to chemotherapy, suggesting Bfl-1 as a viable drug target, and also provides a direct path on how to develop Bfl-1-targeting drugs."

Related Links:
University of California, Riverside


Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
8-Channel Pipette
SAPPHIRE 20–300 µL
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.