We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




MicroRNA Regulation Critical for Development of Pediatric Brain Tumors

By Gerald M. Slutzky, PhD
Posted on 14 Dec 2016
Cancer researchers have uncovered the critical role played by microRNA regulation in the development of childhood brain tumors.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. More...
Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Low-grade gliomas and glioneuronal tumors represent the most frequent primary tumors of the central nervous system in children. Unlike many other types of cancerous tumors, these low-grade pediatric gliomas appear to have few genetic mutations, so the molecular basis for their development has been unclear.

Investigators at Johns Hopkins University (Baltimore, MD, USA) chose to examine a possible role for miRNAs in the development of pediatric gliomas, since miRNAs had been identified as molecular regulators of protein expression/translation that could repress multiple mRNAs concurrently through base pairing, and had an important role in other cancers.

The investigators used the NanoString (Seattle, WA, USA) digital counting system to analyze the expression levels of 800 microRNAs in nine low-grade glial and glioneuronal tumor types.

They reported in the October 14, 2016, online edition of the journal Modern Pathology that a set of 61 microRNAs were differentially expressed in tumors compared with normal brain tissues, and several showed levels varying by tumor type. MicroRNAs miR-4488 and miR-1246 were overexpressed in dysembryoplastic neuroepithelial tumors compared with brain tissue and other tumors, while miR-487b was variably under-expressed in pediatric glioma lines compared with human neural stem cells.

The investigators employed lentiviral vectors to overexpress miR-487b in a pediatric glioma cell line. These modified cells were found to be less cancer-like, forming 30% fewer colonies and had decreased levels of some proteins, such as Nestin (neuroectodermal stem cell marker). Nestin is known to be important in both early development and in cancers.

Senior author Dr. Fausto J.Rodriguez, associate professor of pathology at Johns Hopkins University, said, "Physicians might be able to look at the levels of this and other microRNAs in blood or cerebrospinal fluid to test for the presence of cancer. Researchers might also be able to target microRNAs directly, altering their levels to make cancer cells less likely to form tumors. By gaining a better understanding of the fine genetic differences between cancers and healthy tissues, we can develop better therapeutic or prognostic strategies."

Related Links:
Johns Hopkins University
NanoString

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.