We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Next-Generation Drugs Circumvent Adverse Immune Response

By Gerald M. Slutzky, PhD
Posted on 13 Dec 2016
Drugs conjugated with a modified type of polyethylene glycol (PEG)-based polymer demonstrate enhanced and longer life performance without triggering an immune response from indigenous anti-PEG antibodies.

The delivery of peptide and protein drugs is often complicated by short half-lives and the consequent need for frequent injections that limit efficacy, reduce patient compliance, and increase treatment cost.

PEG polymers have been attached to drugs to slow the body's clearing of them from the bloodstream, greatly lengthening the duration of their effects. More...
However, the pervasiveness of PEG in daily human life has caused many people to develop antibodies to the polymer that result in adverse allergic responses to PEGylated drugs.

Investigators at Duke University (Durham, NC, USA) have addressed this problem by conjugating drugs to a modified form of PEG: poly[oligo(ethylene glycol) methyl ether methacrylate] or POEGMA. They reported in the November 28, 2016, online edition of the journal Nature Biomedical Engineering that a single subcutaneous injection of site-specific (C-terminal) conjugates of exendin-4 (exendin) - a therapeutic peptide that is clinically used to treat type II diabetes mellitus - and POEGMA with precisely controlled molecular weights lowered blood glucose for up to 120 hours in fed mice.

The investigators also showed that an exendin-C-POEGMA conjugate with an average of nine side-chain ethylene glycol (EG) repeats exhibited significantly lower reactivity towards patient-derived anti-poly(ethylene glycol) (anti-PEG) antibodies than two [US] Food and Drug Administration-approved PEGylated drugs, and that reducing the side-chain length to three EG repeats completely eliminated PEG antigenicity without compromising in vivo efficacy.

"We started down a path to make PEG-like conjugates of protein drugs more efficiently and stumbled into the PEG antigenicity problem," said senior author Dr. Ashutosh Chilkoti, professor of biomedical engineering at Duke University. "This work has been an interesting journey with the unexpected twists and turns that makes research so rewarding."

Related Links:
Duke University



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.