We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Targeted Destruction of Messenger RNA Regulates Cellular Protein Synthesis

By LabMedica International staff writers
Posted on 14 Oct 2016
Researchers have proposed a mechanism that explains how cells regulate protein synthesis by coordinating the destruction of messenger RNA (mRNA) in the cytoplasm.

Messenger RNA carries the instructions genes from the nucleus of a cell into the cytoplasm where it teams up with ribosomes to manufacture protein. More...
As long as the mRNA remains functional, protein synthesis can continue. It was not known how the cell controlled the amount of protein to make.

Investigators at Case Western Reserve University (Cleveland, OH, USA) and Johns Hopkins University (Baltimore, MD, USA) have now proposed a mechanism to explain how levels of cellular protein synthesis are controlled.

The master regulator is the enzyme called DEAD-box protein Dhh1p. DEAD box proteins are involved in an assortment of metabolic processes that typically involve RNAs, but in some cases also other nucleic acids. They are highly conserved in nine motifs and can be found in most prokaryotes and eukaryotes, but not all. Many organisms, including humans, contain DEAD-box helicases, which are involved in RNA metabolism.

The investigators reported in the September 15, 2016, online edition of the journal Cell that Dhh1p physically interacted with ribosomes in vivo. It was a sensor of codon optimality that targeted an mRNA for decay. Messenger RNAs whose translation elongation rate was slowed by inclusion of non-optimal codons were specifically degraded in a Dhh1p-dependent manner. Biochemical experiments showed that Dhh1p was preferentially associated with mRNAs with suboptimal codon choice. These effects on mRNA decay were sensitive to the number of slow-moving ribosomes on an mRNA.

“Our study provides a new way to look at the genetic code,” said senior author Dr. Jeff Coller, director of the center for RNA molecular biology at Case Western Reserve University. “We are so used to looking at how DNA mutations cause a change in protein function. We must also consider how enzymes like Dhh1p sense the speed at which ribosomes interpret the genetic code. Now I can look at the genetic code in terms of speed and rate, and with reasonable accuracy predict how much protein is going to come from a gene. There is huge application for that in human biologics, proteins that are easily taken by injection. There are rare genetic diseases attributed to RNA being read too slow or too fast. We can now manipulate this process to dial up or down protein expression. The speed at which the ribosome reads the genetic code and is sensed by Dhh1p could open up a new set of mutation types that could indicate disease states we are unaware of today.”

Related Links:
Case Western Reserve University
Johns Hopkins University

New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
PlGF Test
Quidel Triage PlGF Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The RNA-seq based diagnostic test for pediatric leukemia ensures better outcomes for children with this common cancer (Photo courtesy of Qlucore)

RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia

A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.