We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Stabilizing Iron-Sulfur Transport Clusters Reduces Size and Aggressiveness of Tumors

By LabMedica International staff writers
Posted on 21 Sep 2016
An international team of cancer researchers has identified a protein that, when overexpressed, enabled breast tumors to better withstand oxidative stress thereby becoming much larger and more aggressive.

The protein in question is the iron–sulfur (Fe-S) nutrient-deprivation autophagy factor-1 (NAF-1) protein, a member of the NEET family that transport clusters of iron and sulfur molecules inside cells. More...
The clusters, which adhere to the mitochondrial membrane, help regulate processes in cells by controlling reduction-oxidation (redox) and metabolic activity. NAF-1 is unique among Fe-S proteins due to its 3Cys-1His cluster coordination structure that allows it to be relatively stable, while still being able to transfer its clusters to apo-acceptor proteins.

Investigators at The Hebrew University of Jerusalem (Israel) and Rice University (Houston, TX, USA) reported in the September 12, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that overexpression of NAF-1 in xenograft breast cancer tumors resulted in a dramatic augmentation in tumor size and aggressiveness, and that NAF-1 overexpression enhanced the tolerance of cancer cells to oxidative stress.

The importance of NAF-1 overexpression was emphasized by the discovery of a NAF-1 mutant with a single point mutation that stabilized the NAF-1 clusters. The presence of the mutated form of the protein in xenograft breast cancer tumors resulted in a dramatic decrease in tumor size that was accompanied by enhanced mitochondrial iron and reactive oxygen accumulation and reduced cellular tolerance to oxidative stress. Treating breast cancer cells with pioglitazone, a compound that stabilized the 3Cys-1His cluster of NAF-1, resulted in a similar effect on mitochondrial iron and reactive oxygen species accumulation. This finding supports the potential use of drugs that suppress NAF-1 accumulation or stabilize its clusters for the treatment of cancers that display high expression levels of NAF-1.

Senior author Dr. Rachel Nechushtai, professor of biochemistry at The Hebrew University of Jerusalem, said, "Tumors depend on the lability, or the transient nature, of the clusters. The more NAF-1 you make, and the more its clusters can be transferred, the bigger the tumor develops. We knew from previous studies that pioglitazone stabilizes the cluster. With the mutant, we hardly got any tumors and did not see angiogenesis (the process through which new blood vessels form). When we did see tumors, they were white, not red, because they had no blood vessels."

"We thought, "How do we connect this to the clinics?" The only connection was to try a drug that, like the mutation, also stabilizes the cluster," said Dr. Nechushtai. "Dr. Fang Bai of Rice University showed in her simulations where the binding site is and why the drug stabilizes the cluster."

Related Links:
Hebrew University of Jerusalem
Rice University


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Collection and Transport System
PurSafe Plus®
New
Gel Cards
DG Gel Cards
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.