We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Single Molecule Imaging Reveals How Telomerase Finds and Binds to the Telomere

By LabMedica International staff writers
Posted on 31 Aug 2016
Genomics researchers have combined the CRISPR/Cas9 gene editing technique with advanced single-molecule imaging technology to demonstrate how the enzyme telomerase finds and attaches to the telomere, the region of repetitive nucleotide sequences at each end of a chromosome, which protects the end of the chromosome from deterioration or from fusion with neighboring chromosomes.

Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. More...
Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood.

To examine this mechanism, investigators at the University of Colorado Cancer Center (Denver) used the CRISPR/Cas9 gene editing technique to insert the gene for a fluorescent protein marker into the telomerase gene, which resulted in telomerase proteins that could be observed under a fluorescent microscope. The marked telomerase molecules were tracked with a single-molecule imaging system in the nuclei of living human cells.

The investigators reported in the August 11, 2016, online edition of the journal Cell that telomerase used three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depended on the direct interaction of the telomerase protein TERT (Telomerase reverse transcriptase) with the telomeric protein TPP1. When telomerase found and attached to a telomere, it added a repeating DNA sequence to the repeating DNA sequences that were already in place, lengthening the telomere and adding to the chromosome's protective ends.

"Right now we do not have a great telomerase inhibitor. We do not know at which step our first generation of these drugs is interfering so we do not know how to optimize these drug candidates for anti-cancer effect," said senior author Dr. Thomas Cech, Nobel Prize winning professor of chemistry and biochemistry at the University of Colorado. "Does a drug prevent the assembly of telomerase? Does it keep telomerase from moving near telomeres? Does it prevent telomerase from finding a telomere end? Knowing where a drug blocks the ability of telomerase to lengthen telomeres could have broad applicability for diverse cancers."

Related Links:
University of Colorado Cancer Center



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.