We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Japanese Scientists Describe Powerful Fluorescent Probe for Studying RNA

By LabMedica International staff writers
Posted on 16 Aug 2016
A team of Japanese biochemists has described the development of a powerful new fluorescent probe for studying the structure and function of double stranded RNA (dsRNA).

Investigators at Tohoku University (Sendai, Japan) created the probe by integrating the fluorescent dye thiazole orange (TO) as a base surrogate into triplex-forming PNA (peptide nucleic acid). More...
PNAs are artificially synthesized polymers similar to DNA or RNA that were invented in 1991.

DNA and RNA have a deoxyribose and ribose sugar backbone, respectively, whereas PNA's backbone is composed of repeating N-(2-aminoethyl)-glycine units linked by peptide bonds. The various purine and pyrimidine bases are linked to the backbone by a methylene bridge (-CH2-) and a carbonyl group (-(C=O)-).

The investigators reported in the July 21, 2016, online edition of the Journal of the American Chemical Society that their probe formed a thermally stable triplex with the target dsRNA at acidic pH; and the triplex formation was accompanied by the remarkable light-up response of the TO unit. The binding of the probe to the target dsRNA proceeded very rapidly, allowing real-time monitoring of the triplex formation.

The TO base surrogate in the probe functioned as a universal base for the base pair opposite the TO unit in the triplex formation. Furthermore, the TO unit was significantly more responsive towards the fully matched dsRNA sequence compared to mismatch-containing sequences, which enabled the analysis of the target dsRNA sequence at single-base pair resolution.

The probe showed a striking preference for binding to dsRNA over dsDNA, which will be important in future applications in a cellular environment where RNA and DNA co-exist.

Related Links:
Tohoku University


New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B
New
Chlamydia Trachomatis Test
Aptima Chlamydia Trachomatis Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The Volition Nu.Q nucleosome assay runs on the IDS i10 automated analyzer platform (Photo courtesy of VolitionRx)

Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes

Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.