We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Japanese Scientists Describe Powerful Fluorescent Probe for Studying RNA

By LabMedica International staff writers
Posted on 16 Aug 2016
Print article
Image: The chemical structure of the probe, and the possible probe-dsRNA triplex structure (Photo courtesy of Tohoku University).
Image: The chemical structure of the probe, and the possible probe-dsRNA triplex structure (Photo courtesy of Tohoku University).
A team of Japanese biochemists has described the development of a powerful new fluorescent probe for studying the structure and function of double stranded RNA (dsRNA).

Investigators at Tohoku University (Sendai, Japan) created the probe by integrating the fluorescent dye thiazole orange (TO) as a base surrogate into triplex-forming PNA (peptide nucleic acid). PNAs are artificially synthesized polymers similar to DNA or RNA that were invented in 1991.

DNA and RNA have a deoxyribose and ribose sugar backbone, respectively, whereas PNA's backbone is composed of repeating N-(2-aminoethyl)-glycine units linked by peptide bonds. The various purine and pyrimidine bases are linked to the backbone by a methylene bridge (-CH2-) and a carbonyl group (-(C=O)-).

The investigators reported in the July 21, 2016, online edition of the Journal of the American Chemical Society that their probe formed a thermally stable triplex with the target dsRNA at acidic pH; and the triplex formation was accompanied by the remarkable light-up response of the TO unit. The binding of the probe to the target dsRNA proceeded very rapidly, allowing real-time monitoring of the triplex formation.

The TO base surrogate in the probe functioned as a universal base for the base pair opposite the TO unit in the triplex formation. Furthermore, the TO unit was significantly more responsive towards the fully matched dsRNA sequence compared to mismatch-containing sequences, which enabled the analysis of the target dsRNA sequence at single-base pair resolution.

The probe showed a striking preference for binding to dsRNA over dsDNA, which will be important in future applications in a cellular environment where RNA and DNA co-exist.

Related Links:
Tohoku University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.