We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Expression of Stem Cell Gene Restores Contractile Function to Aged Muscle Cells

By LabMedica International staff writers
Posted on 08 Aug 2016
Transplanting a stem cell gene into aged muscle cells reversed many indicators of cellular senescence and completely restored the cells' ability to generate contractile force.

Cellular senescence as a result of aging or progeroid diseases, such as Hutchinson-Gilford progeria syndrome, leads to stem cell pool exhaustion that hinders tissue regeneration and contributes to the progression of age related disorders. More...
Furthermore, the ability of adult stem cells to form muscle and generate force declines with aging.

Investigators at the University at Buffalo (NY, USA) examined the possibility of reversing the aging process by transplanting the NANOG gene into aged muscle cells. NANOG is a transcription factor in embryonic stem cells (ESCs) that is thought to be a key factor in maintaining pluripotency.

The investigators inserted NANOG into cells from three different models of aging: cells isolated from aged donors, cells aged in culture, and cells isolated from patients with Hutchinson-Gilford progeria syndrome. They reported in the July 11, 2016, online edition of the journal Stem Cells that expression of NANOG in senescent or progeroid muscle progenitor cells reversed cellular aging and restored completely the ability to generate contractile force.

NANOG worked this magic by enabling reactivation of the Rho-associated protein kinase (ROCK) and transforming growth factor (TGF)-beta pathways - both of which were impaired in senescent cells. Reactivation of these pathways stimulated dormant proteins (actin) to generate cytoskeletons that adult stem cells need to form contractile muscle cells and activated the central regulator of muscle formation, serum response factor (SRF).

"Our research into Nanog is helping us to better understand the process of aging and ultimately how to reverse it," said senior author Dr. Stelios T. Andreadis, professor of chemical and biological engineering at the University at Buffalo. "Not only does Nanog have the capacity to delay aging, it has the potential in some cases to reverse it."

Related Links:
University at Buffalo



Gold Member
Veterinary Hematology Analyzer
Exigo H400
Serological Pipet Controller
PIPETBOY GENIUS
New
Integrated Biochemical & Immunological System
Biolumi CX8
New
Staining Management Software
DakoLink
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.