We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Expression of Stem Cell Gene Restores Contractile Function to Aged Muscle Cells

By LabMedica International staff writers
Posted on 08 Aug 2016
Transplanting a stem cell gene into aged muscle cells reversed many indicators of cellular senescence and completely restored the cells' ability to generate contractile force.

Cellular senescence as a result of aging or progeroid diseases, such as Hutchinson-Gilford progeria syndrome, leads to stem cell pool exhaustion that hinders tissue regeneration and contributes to the progression of age related disorders. More...
Furthermore, the ability of adult stem cells to form muscle and generate force declines with aging.

Investigators at the University at Buffalo (NY, USA) examined the possibility of reversing the aging process by transplanting the NANOG gene into aged muscle cells. NANOG is a transcription factor in embryonic stem cells (ESCs) that is thought to be a key factor in maintaining pluripotency.

The investigators inserted NANOG into cells from three different models of aging: cells isolated from aged donors, cells aged in culture, and cells isolated from patients with Hutchinson-Gilford progeria syndrome. They reported in the July 11, 2016, online edition of the journal Stem Cells that expression of NANOG in senescent or progeroid muscle progenitor cells reversed cellular aging and restored completely the ability to generate contractile force.

NANOG worked this magic by enabling reactivation of the Rho-associated protein kinase (ROCK) and transforming growth factor (TGF)-beta pathways - both of which were impaired in senescent cells. Reactivation of these pathways stimulated dormant proteins (actin) to generate cytoskeletons that adult stem cells need to form contractile muscle cells and activated the central regulator of muscle formation, serum response factor (SRF).

"Our research into Nanog is helping us to better understand the process of aging and ultimately how to reverse it," said senior author Dr. Stelios T. Andreadis, professor of chemical and biological engineering at the University at Buffalo. "Not only does Nanog have the capacity to delay aging, it has the potential in some cases to reverse it."

Related Links:
University at Buffalo



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: DROP-AD in-house collection and extraction protocol and testing procedures (Huber, H., Montoliu-Gaya, L., Brum, W.S. et al.; Nat Med (20256); doi.org/10.1038/s41591-025-04080-0)

At-Home Blood Tests Accurately Detect Key Alzheimer's Biomarkers

Diagnosing Alzheimer’s disease typically relies on brain scans or spinal fluid tests, which are invasive, costly, and difficult to access outside specialist clinics. These barriers have limited large-scale... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.