We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Phosphorylation Turns a Tumor Suppressor into a Promoter of Cancer Development

By LabMedica International staff writers
Posted on 03 Aug 2016
Cancer researchers have determined the molecular mechanism by which a modification to the protein encoded by the RUNX3 gene turns a tumor suppressor into a promoter of cancer development and progression.

There are three mammalian RUNX genes, RUNX1, RUNX2, and RUNX3, all of which are associated with oncogenic activities. More...
While RUNX3 is a key tumor suppressor in many tissue types such as gastric, colon and bladder, it promotes oncogenesis in ovarian and skin cancers. The RUNX3 gene encodes a member of the runt domain-containing family of transcription factors. A heterodimer of this protein and a beta subunit forms a complex that binds to the core DNA sequence found in a number of enhancers and promoters and can either activate or suppress transcription. It usually functions as a tumor suppressor, and the gene is frequently deleted or transcriptionally silenced in cancer.

Investigators at the National University of Singapore (Singapore) reported in the May 23, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that the phosphorylation of the threonine 173 (T173) residue within the Runt domain of RUNX3 disrupted RUNX DNA binding activity during mitotic entry to facilitate the recruitment of RUNX proteins to mitotic structures. Moreover, knockdown of RUNX3 delayed mitotic entry.

Phosphorylation of the RUNX3 protein was found to be carried out by the Aurora kinase enzyme, which is present in unusually high levels in some cancers. Phosphorylation prevented the binding of RUNX3 to DNA, resulting in RUNX3 relocating to centrosomes where it promoted uncontrolled cell division.

”Unlike other modifications which stem from changes to the RUNX3 DNA itself or how DNA is read, phosphorylation does not accompany any changes in the DNA and is hence undetectable at the genetic level. Given that modifications such as phosphorylation are likely to be impermanent and reversible, the clinical implications are far ranging. Moving forward, the team is looking into ways to assess the feasibility of enhancing RUNX tumor suppression or inhibiting RUNX mitotic function to kill rapidly proliferating cancer cells,” said senior author Dr. Yoshiaki Ito, professor of medical oncology at the National University of Singapore.

Related Links:
National University of Singapore



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Scout\'s patented molecular technology delivers results matching high-complexity PCR 99% of the time (Photo courtesy of Scout Health)

STI Molecular Test Delivers Rapid POC Results for Treatment Guidance

An affordable, rapid molecular diagnostic for sexually transmitted infections (STIs) has the potential to be globally relevant, particularly in resource-limited settings where rapid, point-of-care results... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.