We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Nanoprobe Reveals Dynamics of Plaque Development in Living Alzheimer's Cells

By LabMedica International staff writers
Posted on 27 Jun 2016
Print article
Image: The 50-nanometer tip of this nanoplasmonic fiber tip probe allows direct measurement of protein levels in living single cells (Photo courtesy of Dr. Feng Liang, Harvard University).
Image: The 50-nanometer tip of this nanoplasmonic fiber tip probe allows direct measurement of protein levels in living single cells (Photo courtesy of Dr. Feng Liang, Harvard University).
A novel nanoscale plasmonic probe was used to follow the formation of toxic tau and amyloid (A-beta) plaques in living, anesthetic treated neuroblastoma cells.

Investigators at Massachusetts General Hospital (Boston, USA) and the Harvard University Medical School (Boston, MA, USA) capitalized on novel nanoplasmonic fiber tip probe (nFTP) technology to study the dynamic relations between A-beta and tau proteins in single living neuroblastoma cells.

Plasmonic resonance is a phenomenon that occurs when light is reflected off thin metal films, which may be used to measure interaction of biomolecules on the surface. An electron charge density wave arises at the surface of the film when light is reflected at the film under specific conditions. A fraction of the light energy incident at a defined angle can interact with the delocalized electrons in the metal film (plasmon) thus reducing the reflected light intensity. The angle of incidence at which this occurs is influenced by the refractive index close to the backside of the metal film, to which target molecules are immobilized. If ligands in a mobile phase running along a flow cell bind to the surface molecules, the local refractive index changes in proportion to the mass being immobilized. This can be monitored in real time by detecting changes in the intensity of the reflected light. In the current study a 50-nanometer diameter gold nanorod acted as the plasmon resonance biosensor.

The investigators reported results obtained by using the nFTP in the June 6, 2016, online edition of the journal Nano Letters. They found that A-beta42 generation, under clinically relevant anesthetic treatment, preceded tau phosphorylation, which then facilitated further A-beta42 generation. This observation was supported by measuring proteins in cell lysates using the ultrasensitive label-free photonic crystal nanosensors. Thus, the nFTP technique proved to be an advanced method for investigating protein expression and post-translational modification in live cells and for determining outcomes of intervention of Alzheimer’s disease and other neurodegenerative disorders.

"We have brought the traditional immunoassay into living cells with exquisite sensitivity," said senior author Dr. Qimin Quan, a junior fellow at the Rowland Institute of the Harvard University Medical School. "The device is still limited in its ability to measure a large number of single cells, requiring further improvement. But its high-sensitivity, label-free and single-cell capability make it a unique tool for diagnosing clinically obtained limited samples."

Related Links:
Massachusetts General Hospital
Harvard University Medical School
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
Silver Member
Fixed Speed Tube Rocker
GTR-FS

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Health Canada has approved SPINEstat, a first-in-class diagnostic blood test for axSpA, as a Class II medical device (Photo courtesy of Augurex)

First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis

Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.